
https://pms2022.sciencesconf.org/

Book of Extended Abstracts

Mario Vanhoucke

Ghent, 11/04/2022

https://pms2022.sciencesconf.org/

Foreword 3  
Organising committee 4  
International Program committee 5  
Best student paper award 5  
Scientific program 7  
Plenary Talk 9  
Accepted abstracts 12  
List of participants 180  
List of sponsors 182  

Foreword

Ghent April, 2022.

PMS is an international workshop series devoted to Project Management and Scheduling.
It was inaugurated by the European Working Group on Project Management and
Scheduling (EURO - EWG Project management and scheduling), originally coordinated by
Prof. Jan Węglarz (Poznan University of Technology, Poland) and now coordinated by
Prof. Erik Demeulemeester (KU Leuven, Belgium) and Prof. Joanna Józefowska (Poznan
University of Technology, Poland).

The EWG decided to organise a workshop every two years. The workshops provide an
ideal opportunity to discuss recent and important issues in the field of project management
(planning, scheduling, control) and machine scheduling (single and parallel machine
problems, flow shop, job shop, etc.).

The first workshop was held in Lisbon in July 1988. The successor workshops were held in
Compiègne (1990), Como (1992), Leuven (1994), Poznan (1996), Istanbul (1998),
Osnabrück (2000), Valencia (2002), Nancy (2004), Poznan (2006), Istanbul (2008), Tours
(2010), Leuven (2012), Munich (2014), Valencia (2016), Rome (2018) and Toulouse (2021
- online edition due to COVID-19).

The PMS 2022 workshop should have been held at the Vlerick Business School, located in
Ghent, Belgium. The Vlerick Business School Campus Ghent is located in the historic city
centre of Ghent, and is situated on the renovated premises of the Major Seminary, which
was an institution for the training of Catholic clergy for the diocese of Ghent. Due to the
COVID-19 coronavirus pandemic, we were unfortunately forced to organise the PMS 2022
workshop in a virtual way. The PMS 2022 workshop is co-organised by Vlerick Business
School and Ghent University under the scientific supervision of the EURO EWG-PMS
International committee.

The Workshop covers the following but non-exhaustive list of project management and
scheduling areas:

• Project Management: Network modelling, Project scheduling, Resource management,
Due- date management, Project risk management, Project scheduling under uncertainty,
Proactive/reactive project scheduling, Multi-criteria project scheduling, Applications,
Software

• Machine Scheduling: Shop scheduling, Scheduling with additional constraints, Machine
assignment and scheduling, Flexible/robust scheduling, Grid scheduling, Multi-criteria
scheduling, Applications, Software.

Methodological/theoretical papers related to Operational Research, Artificial Intelligence/
Machine Learning models, exact and heuristic algorithms for scheduling problems were
presented, as well as papers dealing with data-driven approaches, practical applications
and industrial case studies.

Overall, 49 extended abstracts were received and 42 extended abstracts were accepted
after a peer-review process, and 105 participants registered to the workshop. A total of 20
nationalities are represented among the participants, as displayed below:

Not less than 21 extended abstracts applied to the Best Student Paper Award and 6
finalists were selected to present their work in 2 dedicated sessions. Prizes were awarded
by EURO. Congratulations to Hendrik Weber (First Prize), Tom Portoleau (Second Prize)
and Jakob Snauwaert (Third Prize).

We had the pleasure to listen to plenary talks by Vincent T’Kindt and Öncü Hazir.

You will find in these proceedings :

• The member list of the Organisation Committee,
• The member list of the Program Committee,
• The finalists and the winners of the Best Student Paper Award,
• The conference program,
• The plenary talk abstracts and a short bio of each plenary speaker,
• The extended abstracts,
• The list of participants,
• The list of sponsors.

We warmly thank all the participants and the international program committee who greatly
contributed to the large success of the workshop!

The PMS 2022 organising Committee.

Organising committee

pms2022@sciencesconf.org

Mario Vanhoucke. Ghent University (Workshop chair)
José Coelho. Ghent University
Annelies Martens. Ghent University
Tom Servranckx. Ghent University
Gaëtane Beernaert. Vlerick Business School

France 31 Colombia 2

Germany 20 Norway 2

Belgium 17 Switzerland 2

Italy 4 USA 2

Turkey 3 UK 2

Isreal 3 Hungary 1

Poland 3 India 1

China 3 Canada 1

Spain 3 Philippines 1

Australia 2 # Countries 20

Portugal 2 # Participants 105

mailto:pms2022@sciencesconf.org

International Program Committee

Alessandro Agnetis. Università di Siena (Italy)
Ali Allahverdi. Kuwait University (Kuwait)
Christian Artigues. LAAS-CNRS (France)
Francisco Ballestín. Universitat de València (Spain)
Jacek Błażewicz. Poznań University of Technology (Poland)
Fayez Fouad Boctor. Université Laval (Canada)
Massimiliano Caramia. Università degli Studi di Roma “Tor Vergata” (Italy)
Jacques Carlier. Université de Technologie de Compiègne (France)
Erik Demeulemeester. Katholieke Universiteit Leuven (Belgium)
Joanna Józefowska. Poznań University of Technology (Poland)
Sigrid Knust. Universität Osnabrück (Germany)
Rainer Kolisch. Technische Universität München (Germany)
Mikhail Kovalyov. National Academy of Sciences of Belarus (Belarus)
Wieslaw Kubiak. Memorial University (Canada)
Linet Özdamar. Yeditepe Üniversitesi (Turkey)
Erwin Pesch. Universität Siegen (Germany)
Chris Potts. University of Southampton (United Kingdom)
Rubén Ruiz. Universitat Politècnica de València (Spain)
Funda Sivrikaya-Şerifoğlu. Istanbul Bilgi Üniversitesi (Turkey)
Avraham Shtub. Technion - Israel Institute of Technology (Israel)
Vincent T'kindt. Université François Rabelais Tours (France)
Norbert Trautmann. Universität Bern (Switzerland)
Mario Vanhoucke. Ghent University (Belgium)
Jan Węglarz. Poznań University of Technology (Poland)
Jürgen Zimmermann. Technische Universität Clausthal (Germany)

Best student paper award

The following extended abstracts were finalists of the best student paper award:

• Generation and Characterization of Real-World Instances for the Flexible Resource-
Constrained Multi-Project Scheduling Problem  
Hendrik Weber, Robert Brachmann, Rainer Kolisch

• Large neighborhood search for a multi-mode resource constrained scheduling problem
with resource leveling objective  
Tom Portoleau, Christian Artigues, Tamara Borreguero Sanchidrian, Alvaro Garcia
Sanchez, Miguel Ortega Mier, Pierre Lopez

• New empirical and artificial data instances for the multi-skilled resource-constrained
project scheduling problem 
Jakob Snauwaert, Mario Vanhoucke

• Solving the Assembly Line Balancing Problem with LocalSolver  
Léa Blaise, Thierry Benoist, Christian Artigues

• A branch and bound approach for stochastic 2-machine flow shop scheduling with
rework 
Lei Liu, Marcello Urgo

• Total Core Idle Time minimization for the permutation flowshop scheduling problem  
Paula Sanchez-de los Reyes, Paz Perez-Gonzalez

The jury is made of the whole International Program Committee, except those involved in
the phD thesis.

• The first prize (500€) was awarded by EURO to Hendrik Weber (Technical University of
Munich, Germany)

• The second prize (300€) was awarded by EURO to Tom Portoleau (LAAS-CNRS,
Université de Toulouse, CNRS, Toulouse, France)

• The third prize was awarded to (200€) was awarded by EURO to Jakob Snauwaert
(Ghent University, Belgium)

Project Scheduling Track Machine Scheduling Track
https://vlerick.zoom.us/j/83725972479?pwd=ZTMvTjBBaE1IeU5za2xFSlJ1N1JYZz09 https://vlerick.zoom.us/j/81295231269?pwd=aWFuWVJQd1lXald4V2g5MGFseFErdz09

10.50 AM - 12.10 PM 10.50 AM - 12.10 PM
PS 1: RCPSP | Chair: José Coelho MS 1: Job scheduling | Chair: Vincent T'kindt

Carbon footprint aware resource constrained project scheduling problem in manufacturing Learning based heuristics for scheduling jobs with release dates on a single machine to minimize the sum of completion times
Humyun Rahman, Tom Servranckx, Ripon Chakrabortty, Mario Vanhoucke, Sondoss El Sawah Axel Parmentier, Vincent T'kindt

Problem-specific Priority Rules for Resource-Constrained Project Scheduling Problem with Alternative Subgraphs Sequencing two classes of jobs on a machine with an external no-idle constraint
Rojin Nekoueian, Tom Servranckx, Mario Vanhoucke Alessandro Agnetis, Marco Pranzo

Assembly Line Performance Analysis Based on Aircraft Preliminary Design: a Scheduling Approach Application of Quantum Approximate Optimization Algorithm to Job Shop Scheduling Problem
Anouck Chan, Stéphanie Roussel, Thomas Polacsek Tomasz Pecyna, Krzysztof Kurowski, Rafal Rozycki, Grzegorz Waligora, Jan Weglarz

Heuristic solution approaches to the multi-project scheduling problem Extending Smith's Rule with Task Mandatory Parts and Release Dates
Dries Bredael, Mario Vanhoucke Camille Bonnin, Margaux Nattaf, Arnaud Malapert, Marie-Laure Espinouse

1.40 PM - 3.00 PM 1.40 PM - 3.00 PM
PS 2: Extensions | Chair: Jürgen Zimmerman MS 2: Parallel machine scheduling | Chair: Stéphane Dauzere-Peres

A Novel Continuous-Time Mixed-Integer Linear Programming Model for the Multi-Mode Resource-Constrained Project Scheduling Problem Insights and results for the offline and online weighted capacitated parallel machine scheduling problem
Nicklas Klein Izack Cohen, Ilan Cohen, Iyar Zaks

A relaxation-based generation scheme for the RCPSP/max,pi Maximal slacks between lower bounds of the makespan on parallel processors
Mareike Karnebogen, Jürgen Zimmermann Claire Hanen, Jacques Carlier

A time-based schedule-generation scheme for project scheduling with storage resources An Inclusion-Exclusion based general exponential-time algorithm for the solution of unrelated parallel machine scheduling problems
Mario Christian Sillus, Christoph Schwindt Olivier Ploton, Vincent T'kindt

A fix-and-optimize heuristic for the resource renting problem Aggregation techniques for a scheduling model on parallel machines in the photolithography area of the semiconductor manufacturing industry
Max Reinke, Jürgen Zimmermann Jeremy Berthier, Stéphane Dauzere-Peres, Claude Yugma

3.20 PM - 4.00 PM 3.20 PM - 4.00 PM
PS 3: Methodologies | Chair: Avraham Shtub MS 3: Robust/stochastic scheduling | Chair: Christian Artigues

Early-Stage Prediction of Project Duration - Machine Learning Approach vs. Traditional Approach Robust scheduling within SNCF railway maintenance centers
Itai Lishner, Avraham Shtub Rahman Torba, Stéphane Dauzere-Peres, Claude Yugma, Cédric Gallais, François Ramond

A Method to Find Criticalities in Project Networks with Feeding Precedence Relations Two-stage stochastic/robust scheduling using permutable operation groups
Lucio Bianco, Massimiliano Caramia, Stefano Giordani, Alessio Salvatore Louis Riviere, Christian Artigues, Hélène Fargier

4.00 PM - 5.00 PM

(Same ZOOM link as Welcome Session)

Chair: Erwin Pesch

Plenary Session 1

The Fairy Tale of Scheduling and the Enchanted Combinatoric

Large neighborhood search for a multi-mode resource constrained scheduling problem with resource leveling objective
Tom Portoleau, Christian Artigues, Tamara Borreguero Sanchidrian, Alvaro Garcia Sanchez, Miguel Ortega Mier, Pierre Lopez

New empirical and artificial data instances for the multi-skilled resource-constrained project scheduling problem
Jakob Snauwaert, Mario Vanhoucke

DAY 1 - Wednesday 6 April 2022

Generation and Characterization of Real-World Instances for the Flexible Resource-Constrained Multi-Project Scheduling Problem
Hendrik Weber, Robert Brachmann, Rainer Kolisch

Student Award 1

9.00 AM - 10.30 AM

(Same ZOOM link as Welcome Session)

Chair: Erik Demeulemeester

Welcome Session at 8.30 AM
https://vlerick.zoom.us/j/81322496972?pwd=Mmdwb3Y3QXlXRWFJYlJJZCt5L2kwZz09

Vincent T’Kindt

Project Scheduling Track Machine Scheduling Track
https://vlerick.zoom.us/j/83565550863?pwd=emJjbU43bGcwRmljeHROdTF5MzQxZz09 https://vlerick.zoom.us/j/82147276729?pwd=enBVVzlmeXdIeHQycTBwY0I3Yi90dz09

10.50 AM - 12.10 PM 10.50 AM - 12.10 PM
PS 4: Risk | Chair: Massimiliano Caramia MS 4: Flexible scheduling | Chair: Alessandro Agnetis

Budget allocation in risk prevention and risk protection considering risk interdependency Just-In-Time Flexible Job Shop with Stochastic Processing Times
Xin Guan, Tom Servranckx, Mario Vanhoucke Camilo Rodriguez-Espinosa, Eliana María González-Neira

Using schedule risk analysis with resource constraints for project control Logic-based Benders Decomposition for preemptive Flexible Job-Shop Scheduling
Jie Song, Annelies Martens, Mario Vanhoucke Carla Juvin, Laurent Houssin, Pierre Lopez

A comparative analysis for bounding the project completion time distribution in stochastic project networks On the relevance of the makespan service level for the flexible job shop scheduling problem under uncertainty
Forough Vaseghi, Annelies Martens, Mario Vanhoucke Mario Flores Gomez, Stéphane Dauzere-Peres, Valeria Borodin

A comparison of two project forecasting methods using risk models: Structural Equation Modeling and Bayesian Networks Disjunctive graph model for flexible job-shop schedulingproblem with transportation and limited buffer space
Izel Unsal Altuncan, Mario Vanhoucke, Annelies Martens Lucas Berterottière, Claude Yugma, Stéphane Dauzere-Peres

1.40 PM - 3.00 PM 1.40 PM - 3.00 PM
PS 5: Applications | Chair: Rainer Kolisch MS 5: Extensions | Chair: Sigrid Knust

Human-centered interactions for project scheduling decision-aid in space industry Heuristic Parameter Estimation by Machine Learning
Hugo Chevroton, Cyril Briand, Philippe Truillet, Melody Mailliez, Céline Lemercier Aykut Uzunoglu

Project Planning for Engineering Automotive Production Systems Operating rooms scheduling with a shared resource: a red-blue knapsack modeling approach
Maximilian Kolter, Martin Grunow, Rainer Kolisch, Thomas Stäblein Federico Della Croce, Andrea Grosso, Vincent T'kindt

Comparative Study of Two Machine Learning Tasks in Project Scheduling Valid inequalities for the dynamic asset protection problem
Weikang Guo, Mario Vanhoucke, José Coelho Quentin Pena, Aziz Moukrim, Mehdi Serairi

Automated design of priority rules for the RCPSP via efficient genetic programming approach A realistic hybrid flow shop scheduling problem with availability restrictions, priorities, and machine qualifications
Jingyu Luo, Mario Vanhoucke, José Coelho Christin Schumacher, Dominik Mäckel

Öncü Hazir
Project Modeling and Planning under Uncertainty: Last 20 years and Future Perspectives

DAY 2 - Thursday 7 April 2022

Solving the Assembly Line Balancing Problem with LocalSolver
Léa Blaise, Thierry Benoist, Christian Artigues

Chair: Christoph Schwindt

(Same ZOOM link as Student Award 2)
Plenary Session 2

3.20 PM - 4.20 PM

9.00 AM - 10.30 AM

https://vlerick.zoom.us/j/88051222725?pwd=RythWUdPYzN2Y2tuOUFYKzdBbytPUT09

Closing Session
(Same ZOOM link as Student Award 2)

Total Core Idle Time minimization for the permutation flowshop scheduling problem
Paula Sanchez-de los Reyes, Paz Perez-Gonzalez

A branch and bound approach for stochastic 2-machine flow shop scheduling with rework
Lei Liu, Marcello Urgo

Chair: Joanna Józefowska

Student Award 2

Plenary Talk

The Fairy Tale of Scheduling and the Enchanted Combinatoric

Vincent T’Kindt (Polytechnic University of Tours)

Time: 6 April 2022, 4.00 PM - 5.00 PM

Chair: Erwin Pesch

This talk is about the relationship between Scheduling (the nice guy) and Combinatoric
(the bad guy). As scheduling researchers our challenges are, roughly speaking, to study
how scheduling problems can be efficiently solved by computers. But then comes the
Combinatoric, bringing to us difficulties, making us upset about not being able to easily
solve our scheduling problems. Understanding why Combinatoric complicates our life is
challenging but part of the game: there is no way to solve efficiently a scheduling problem
without understanding what makes it difficult and without using appropriate algorithms.

I will give a feedback on my own experience, using some machine scheduling problems as
illustrative examples. Notably, I will mainly focus on the exact and heuristic solution of
scheduling problems by algorithms relying on mathematical programming, making also an
outing in the lands of theoretical computer science and machine learning. I will conclude
by evoking some research topics which could be used to write the next chapters of the
fairy tale.

Keywords: Machine scheduling; Mathematical Programming ; Exponential-time
algorithmsKeywords : Machine scheduling; Mathematical Programming ; Exponential-time
algorithms

Vincent T’kindt is full professor in computer science at the Polytechnique College of the
University of Tours (France). He got his Ph.D. in Computer Science in 1999 from the
University of Tours for and his habilitation (HDR) in 2005. From 2007 to 2020, he headed
the scheduling group (25 people) of the Laboratory of Applied and Theoretical Computer
Science (LIFAT) of the University of Tours.

His initial research works were focused on multi-objective optimisation and scheduling
theory, topic on which he published three books. Along the years, he has been interested
in many topics related to optimisation with most of the time applications to scheduling
theory: e.g. mathematical programming to solve large-size problems, exponential-time
algorithms or even recently the interplay of machine learning and operational research. His
researches have led to three books, more than 50 papers in international peer-reviewed
journals and about 200 communications in conferences.

Project Modeling and Planning under Uncertainty: Last 20 years and Future
Perspectives

Öncü Hazir (Rennes Business School)

Time: 7 April 2022, 3.20 PM - 4.20 PM

Chair: Christoph Schwindt

In this speech, a classification for major sources of uncertainty in projects will be presented
and the approaches adopted in the literature for mitigating the impact of uncertainty will be
discussed. A special emphasis will be given to robust optimisation and its applications in
project planning. The progress in academic knowledge in this area over the last 20 years
will be summarised. Mathematical models will be presented; the extensions and
application areas will be discussed.

The analysis might serve as a useful basis for investigating and modelling the
characteristics of various sources of uncertainty and their impacts on achieving project
targets. The discussion can support researchers to identify the research gaps in
developing project plans under uncertainty. Regarding research directions, the discussion
will highlight some interesting topics that require studies combining project planning and
control, data analytics, risk management, decision support systems.

Keywords: Project Planning, Scheduling, Risk Management, Robust Optimisation, Data
Analytics, Decision Support Systems

Öncü Hazır is an associate professor at Rennes School of Business. He received his BS
degree in Industrial Engineering and MBA degree from the Middle East Technical
University, Ankara, Turkey. He completed his Ph.D. at the Department of Business
Administration in Bilkent University in 2008. His dissertation was on project scheduling. He

worked as a post-doctorate researcher in Laboratoire d'Informatique de Paris 6 and Ecole
Nationale Supérieure des Mines de Saint-Etienne and as an associate professor at TED
University. He participated in various research projects in project planning and control,
machine scheduling, and assembly line balancing and published several articles in
operations research and management journals. He is a co-author of the recently published
textbook, “An Introduction to Project Modelling and Planning”.

1

An Inclusion-Exclusion based general exponential-time

algorithm for the solution of unrelated parallel machine

scheduling problems

Olivier Ploton1, Vincent T’kindt1

Université de Tours, Laboratoire d’Informatique Fondamentale et Appliquée
(LIFAT, EA 6300), ERL CNRS 7002 ROOT, Tours, France

{olivier.ploton,vincent.tkindt}@univ-tours.fr

Keywords: parallel machine scheduling, exponential algorithms, Inclusion-Exclusion.

1 Introduction

In this paper we cope with unrelated parallel machine scheduling problems. There are
n jobs to be scheduled on m unrelated parallel machines. Each job i, when assigned to
machine j, is defined by a processing time pij , a release time rij , and a deadline ˜dij . In a
schedule, each job i is associated with an elementary cost fij , computed as a function of
its completion time Ci. The aim is to minimize the objective function, defined either as the
maximum or as the sum of elementary costs. These problems, denoted by R|rij , ˜dij |fmax

and R|rij , ˜dij |
P

fij using the notation of Graham et al. (1979), are strongly NP-hard.
We are interested in the exact solution of these problems, with the best possible worst

case space and time complexity bounds. In this work we focus on theoretical results rather
than experimental ones. To evaluate complexity, we take the number n of jobs as the size of
an instance. The measure ||I|| of an instance I is essentially the sum

P
i,j pij of processing

times.
We restrict to regular and polynomial elementary cost functions, i.e. each function

C 7! fij(C) is non-decreasing w.r.t. C, and (8C, fij(C)  P (C)) for some polynomial P .
This requirement is met by classical cost functions, as the completion time Ci, the lateness
Lij , the tardiness Tij , the tardiness indicator Uij , and any combination of these functions
with positive weights.

Numerous particular cases of parallel machine scheduling problems have been studied,
but there are few results in the general case. Jansen et al. (2013) provide a general worst-
case time and space bound in O⇤

(2

O(n)||I||O(1)

) = O⇤
(cn||I||O(1)

) for some c. Lente et al.
(2014) describe an algorithm solving the P ||f

max

and P ||
P

f problems with O⇤
(3

n
) space

and time worst-case complexity bounds. Our main contribution is to show that the very
general R|rij , ˜dij |fmax

and R|rij , ˜dij |
P

fij problems can be solved with a worst-case time
complexity bound in O⇤

(2

n||I||O(1)

), and using only pseudopolynomial space.
The algorithms we describe use Inclusion-Exclusion, along with dynamic programming.

The Inclusion-Exclusion formula is interesting because it allows to decide whether or not a
problem admits a solution without ever building an explicit one. This technique, described
in Fomin and Kratsch (2010), has been applied to NP-hard graph problems as the Hamil-
tonian path (Bax 1993, Karp 1982), Steiner trees and perfect matchings (Nederlof 2013).
It has not been used widely in scheduling, but in Karp (1982), and in Nederlof (2008).

2 From the counting problem to an explicit optimal solution

The problem we cope with consists in minimizing a regular objective function � =

maxi fi,j(i) or � =

P
i fi,j(i), where j(i) is the machine assigned to job i. As � is reg-

2

ular, we can restrict to semi-active schedules, where each job starts as soon as possi-
ble. Such a schedule S can be represented as a list of job lists, one per machine: S =

((i
11

...i
1`1) . . . (im1

...im`m)). Moreover, it is useful to introduce release time bounds B =

(B
1

. . . Bm), before which machines are not available. This way, a schedule can be decom-
posed into a prefix and a suffix, and the completions of the prefix are the release bounds
of the suffix, as shown in Figure 1.

7 1 6
2 4 9

5 3 8

j=1

j=2

j=3
time

prefix suffixB

S =

0

@
(7, 1, 6)
(2, 4, 9)
(5, 3, 8)

1

A =

prefix

z }| {0

@
(7, 1)
(2)
(5, 3)

1

A ·

suffixz }| {0

@
(6)
(4, 9)
(8)

1

A

0 5 8

Fig. 1. Gantt chart of a semi-active schedule

Given a job set I, a threshold objective value " and a vector of release bounds B, the
counting problem consists in computing the number N(I,B, ") of schedules using (all)
jobs of I, starting from B, and with objective at most ". The decision problem consists in
testing if there exists such a schedule, i.e. if N(I,B, ") > 0. If we know how to compute
N , we can build an optimal solution using a polynomial number of calls to N . First, we
can compute the optimum objective value �opt

= min{" 2 N | N(I,0, ") > 0}. Then, given
a prefix ⇡, we can use N as an oracle to check whether this prefix can be completed into
an optimal solution. It can be completed when N(I \ ⇡,C(⇡), �opt

) > 0 for a max-type
objective, and when N(I \ ⇡,C(⇡), �opt � �(⇡)) > 0, for a sum-type objective, with C(⇡)
being the completions of ⇡ on each machine. Finally, we can build, step by step, an optimal
solution (Algorithm 1).

Function OptimalSolution:

⇡ empty prefix
repeat n times

find i /2 ⇡ such that (⇡0 = ⇡ followed by i) can be completed into an optimal solution
⇡ ⇡0

return ⇡
Algorithm 1: Computation of an optimal solution

3 The Inclusion-Exclusion technique

As explained by Fomin and Kratsch (2010), using the Inclusion-Exclusion formula con-
sists in relaxing the problem by allowing schedules with duplicated or missing jobs. In order
to reduce the m-machine problem into m single-machine problems in sections 4 and 5, we
shall further relax the problem this way: given a schedule S = ((i

11

...i
1`1) . . . (im1

...im`m)),
we only require at most n jobs per machine, i.e. `

1

n, ..., `mn, instead of requiring glob-
ally n jobs, i.e. `

1

+...+`m = n. So, a relaxed schedule is a list of m independent sub-lists
of at most n jobs, with no correlation between them and no extra constraints.

The Inclusion-Exclusion formula computes the number N 0 of relaxed schedules using
all jobs, given the numbers of relaxed schedules using only jobs of X, for each job subset
X. It states:

N 0
(I,B, ") =

X

X⇢I

(�1)

|I|�|X|NX(B, ") (1)

3

where NX(B, ") is the number of relaxed schedules starting from B, using only jobs of X
and with objective at most ". Notice that N 0

(I,B, ") is not exactly the number N(I,B, ")
of solutions, but, from a relaxed schedule using all jobs, we can derive a potentially better
solution by removing duplicated jobs. So, N 0

(I,B, ")>0 () N(I,B, ")>0 and we may
safely replace N with N 0. We are now about to compute each NX(B, ") in sections 4 and 5.

4 The relaxed counting problem for maximum-type objective functions

In order to compute NX(B, "), we define MX,j,"[b, `] as the number of relaxed schedules
using only jobs of X, starting at release time bound b on the single machine j, with at most
` jobs, and with objective bounded by ". The maximum objective is globally bounded by
" iff it is bounded by " on each machine, so we have:

NX(B, ") =

mY

j=1

MX,j,"[Bj , n] (2)

We compute MX,j,"[b, `] by dynamic programming. An empty job sequence counts as one
solution. A non-empty job sequence (i

1

, i
2

, ..., ih) can be decomposed into a head job i = i
1

and a tail (i
2

, ..., ih). The release bound of the tail is the completion Ci of the head job i.
We derive:

MX,j,"[b, 0] = 1 (3a)

MX,j,"[b, `] = 1 +

X

i2X, Ci ˜dij , fij(Ci)"

MX,j,"[Ci, `�1] for ` > 0 (3b)

where Ci = max(b, rij) + pij (3c)

We now focus on worst-case time and space complexities:
– As Bj = O(||I||), each computation of MX,j,"[Bj , n] is in O⇤

(||I||) time and space.
– By (1), each decision step N 0

(I,B, ")>0 is in O⇤
(2

n||I||) time and O⇤
(||I||) space.

– There are O(log �opt
)=O⇤

(1) decision steps to compute �opt by dichotomy and
O(n)=O⇤

(1) decision steps to compute a solution, the overall algorithm complexity
is in O⇤

(2

n||I||) time and O⇤
(||I||) space.

5 The relaxed counting problem for sum-type objective functions

We redefine NX(B, ") as the number of relaxed schedules with objective exactly ", and
we adapt the rationale. we define MX,j [b, `, "] as the number of relaxed schedules using
only jobs of X, starting at release time bound b on the single machine j, with at most `
jobs, and with objective equal to ". The global objective " is split between the machines,
so we derive this convolution formula:

NX(B, ") =
X

"1+...+"m="

mY

j=1

MX,j [Bj , n, "j] (4)

We compute MX,j [b, `, "] by dynamic programming. An empty job sequence counts as one
solution if " = 0, no solution otherwise, which we write 1"=0

. We derive:

MX,j [b, 0, "] = 1"=0

(5a)

MX,j [b, `, "] = 1"=0

+

X

i2X, Ci ˜dij , fij(Ci)"

MX,j [Ci, `�1, "�fij(Ci)] for ` > 0 (5b)

where Ci = max(b, rij) + pij (5c)

4

To exploit the dynamic programming equation (5b), in which " varies, and the fast convolu-
tion operator implementing formula (4) (Knuth 1997), we determine an upper bound "

max

(in O(�opt
)), and we compute together, as a vector, all NX(B, ") for all "  "

max

. We call
this vector NX(B). We apply the Inclusion-Exclusion formula (1) vectorially to compute
a vector N 0

(I,B). There exists a schedule with objective at most "
max

when N 0
(I,B) has

a non-null component. We derive these worst-case time and space complexities:

– By dynamic programming and convolution, each computation of NX(B) is in
O⇤

(||I||�opt
) time and space.

– Each computation of N 0
(I,B) and thus each decision step is in O⇤

(2

n||I||�opt
) time

and O⇤
(||I||�opt

) space.
– There are O⇤

(1) decision steps to compute a solution, the overall algorithm complexity
is in O⇤

(2

n||I||�opt
) time and O⇤

(||I||�opt
) space.

6 Conclusions

In this paper we consider the problem of scheduling a set of jobs on unrelated par-
allel machines in the presence of job release dates and deadlines, and we deal with the
minimization of any general regular, either maximum or sum, objective function. We de-
scribe a generic exact exponential algorithm, based on Inclusion-Exclusion and dynamic
programming, solving the R|rij , ˜dij |fmax

problem in O⇤
(2

n||I||) time and O⇤
(||I||) space,

and solving the R|rij , ˜dij |
P

fij problem in O⇤
(2

n||I||�opt
) time and O⇤

(||I||�opt
) space,

where �opt is the optimum objective value, polynomial in ||I||. The strength of this algo-
rithm is to manage a wide class of parallel machine scheduling problems, and to achieve,
on a theoretical point on view, moderate exponential-time and pseudopolynomial space
worst-case complexity bounds. While not the fastest in practice compared to specialized
algorithms, this generic algorithm enhances the state-of-the-art theoretical worst-case com-
plexity bounds of several particular parallel machine scheduling problems.

References

Bax E.T., 1993, “Inclusion and exclusion algorithm for the Hamiltonian path problem”, Information
Processing Letters, Vol 17(4), pp 203–207.

Fomin F.V., D. Kratsch, 2010, “Exact exponential algorithms”,, Springer.
Graham R.L., E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, 1979, “Optimization and Approx-

imation in Deterministic Sequencing and Scheduling: a Survey”, Proceedings of the Advanced
Research Institute on Discrete Optimization and Systems Applications, Vol 5, pp 287–326.

Jansen K., F. Land, K. Land, 2013, “Bounding the Running Time of Algorithms for Scheduling
and Packing Problems”, Algorithms and Data Structures - 13th International Symposium, pp
439–450.

Karp R.M., 1982, “Dynamic Processing meets the principle of inclusion and exclusion”, Operational
Research Letters, Vol 1(2), pp 49–51.

Knuth, D., 1997, “The Art of Computer Programming”, Vol 2, p 305, ISBN 0-201-89684-2.
Lenté C., Liedloff M., Soukhal A., T’Kindt V., 2014, “Exponential Algorithms for Scheduling

Problems”,, https://hal.archives-ouvertes.fr/hal-00944382.
Nederlof J., 2008, “Inclusion-exclusion for hard problems”, Master Thesis, Utrecht University.
Nederlof J., 2013, “Fast Polynomial-Space Algorithms Using Inclusion-Exclusion”, Algorithmica,

Vol 65, pp 868–884.

Early-Stage Prediction of Project Duration -

Machine Learning Approach vs. Traditional Approach

Itai Lishner, Avraham Shtub

Faculty of Industrial Engineering and Management,
Technion—Israel Institute of Technology, Haifa, Israel

e-mail: itailishner@hotmail.com

Keywords: Prediction, Machine Learning, Project Management, Gantt, Scheduling.

1. Introduction

Predicting the duration of a project is one of the most challenging tasks a project manager ought
to handle. The uniqueness of each project, the unknown that accompanies the project life cycle and
the risks that might come true, make the prediction task difficult and sometimes seem impossible.
An early-stage prediction of project duration is by nature more difficult than prediction at other
points in the project life cycle, as there is much information that is still unknown and will only be
revealed during the execution of the project. Nevertheless, the need for a prediction of the project’s
duration in its early stages is essential for many reasons (Majid 2006, Alami, 2016), such as project
portfolio planning, product roadmap planning, resources planning, budget planning, cash flow,
customer satisfaction, and more. One of the most common methods to predict a project duration is
using a Gantt chart (Gantt 1903); several prediction methods had been developed based on the Gantt
chart, such as the Critical Path Method (CPM) and the PERT (Program Evaluation and Review
Technique) (Wiest 1964, Petersen 1991). The simplicity of the Gantt chart makes it a very popular
tool (Wilson 2003), but the fact that the Gantt chart cannot foresee changes in activities or resources,
do not take into account the uncertainty in project execution and the fact that it's subject to estimation
errors (König 2005, Hill et al. 2000, Josephs and Hahn 1995, Moore and Healy 2008, Burt and Kemp
1994), prevent it from being a good prediction tool in the early stages of the project. As using the
Gantt chart alone is not good enough for predicting the project end date in its early stage, it was
suggested (White and Hassan 2019, König et al. 2015) that to predict a project outcome, one should
rely on information learned from past projects. The prediction can be done by creating a regression
model that foresees the gap between the Gantt chart prediction and the actual end date of the project,
based on information from similar projects performed in the past. The information extracted from
past projects can be a single feature such as “estimated duration” or it can include additional features,
such as “Project type”, “Project risks”, etc. These features add more information which potentially
can increase prediction accuracy, but also make the regression calculation more complex to solve.
The use of machine learning techniques allows one to create and solve a regression model for multi-
feature regression without needing to handle the complexity of the calculation. This study presents
a comparison between three types of early-stage prediction of a project duration: Traditional Gantt
chart using CPM, Single Feature Regression (SFR) and Machine learning Multi-Features Regression
(MFR). The comparison is based on data from 26 different projects executed in the same
organization between the years 2018–2021.

2. Prediction models

2.1. Gantt chart and CPM

The Gantt chart was developed at the beginning of the 20th century by Henry L. Gantt (Gantt,
1903); it’s a graphic diagram that consists of 2 axes; the vertical axis represents the project's
activities and the horizontal axis represents time. The activities are presented in a bar format
according to the start time and end time when the length of the bar represents the activity duration
(Wilson, 2003). It is easy to see each activity's duration, when it begins and ends, the precedence
relations between the tasks, where the slack is in the project, and it can also show the activities which

are on the critical path. To predict the project duration using the Gantt chart, one should point to the
date on which the last activity on the critical path is expected to end. The Gantt chart may vary and
be updated several times during the project life cycle; each update may cause an updated prediction
of the duration of the project. The prediction of a project duration using the Gantt chart is based on
activity-level time estimation and the precedence relationships among the activities in the project
network schedule; therefore the prediction results are subject to estimation errors and changes in
activities during the project life cycle. Applying the CPM methodology (Wiest 1964) on the Gantt
chart allows one to get a clear date prediction on when the project will end. This is done by
identifying the activities on the critical path. The critical path is the path that has the longest time of
all paths starting from the first activity to the last activity in the project (Zareei, 2018). In order to
determine the critical path, five parameters shall be defined for each activity in the Gantt chart: D[i]
- the duration of activity i, ES[i] - the earliest possible start time of activity i, EF[i]- the earliest
possible finish time of activity i, LS[i] - the latest possible start of activity i, LF[i] - the latest possible
finish time of activity i. Calculating ES[i] and EF[i] for each activity is being done by forward pass
algorithm calculation as specified in equation 1.

 ES[0] = 0.
 For j = 1,2,3, …, n (where n is the last activity)
 ES[j] = maximum{EF[m]}(where m represents all preceding activities of j)

 EF[j] = ES[j] + D[j] (1)

Calculating LS[i] and LF[i] for each activity is done by backward pass algorithm calculation as
specified in equation 2.

Let LS[n] equal the minimal completion time of the project (LS[n]>=ES[n]).
For j = n-1, n-2, …, 0
 LF[j] = minimum {LS[k]} (where k represents activities in which activity j is their predecessor)
 LS[j] = LF[j] – D[j] (2)

Having the values of ES[i], EF[i],LS[i] and LF[i] for each activity allows one to calculate the
activity slack time; slack is the maximum time interval that the activity can be delayed without
delaying the project end time and it is calculated according to equation 3. A slack equal to 0 means
that any delay in the activity will cause a delay in the project end date; therefore an activity with no
slack is a critical activity located on the critical path.

Slack[i]=LS[i]−ES[i]=LF[i]–EF[i] (3)

2.2. Single-feature regression (SFR)

The use of past project information may help to improve prediction accuracy. Many projects
start with the estimation of the project ending time when the project is still in its beginning stage,
and the actual ending time is revealed when the project ends. The use of a data set that contains the
project's estimated end date and the actual end date of the projects, allows one to create a regression
model that describes the relation between predicted duration and the actual duration. Linear
regression has been chosen to be used to describe the relation between the two features. The outcome
is the SFR model which allows predicting the project duration according to the Gantt chart prediction
as an input. This basic information about the projects is usually available for organizations and
therefore the SFR can be implemented in many organizations. Equation 4 describes the SFR model.
Tprediction is the outcome of the SFR model—the predicted duration time of the project; TGantt is the
input which is the Gantt chart prediction duration; a is the slope of the linear line and b is the
intercept.

𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = b + a ∙ 𝑇𝐺𝑎𝑛𝑡𝑡 (4)

2.3. Multi-feature regression (MLR)

Adding additional information may improve the prediction accuracy. In addition to the Gantt
chart prediction information used for the SFR model, we collected more features of each of the
projects in the data set. These features will be used to build a machine learning-based regression
model aimed to improve the predicting accuracy vs. the SFR. The additional features are not always
available when retrospecting projects, so in order to use the MLR model, an organization needs to
adopt a method of recording these features and build a data set that will be used for building the
MLR model. The MLR model is based on a neural network model with Multi-Layer Perceptron
(MLP) (Berlinetal 2009, López-Martínetal 2013) The model consists of an input layer, output layer
and two hidden layers. The output of the MLR model is the predicted duration of the project and the

input for the model is 10 project features: Estimated duration, Project type, Product type, Stability
of the project scope, Degree of uncertainties or risks for project delay, Importance of time,
Importance of cost, Experience with the technology in the project, Level of details in the project
plan, Sub-contractor dependency. A detailed description of each feature will be explained in the
data set section.

3. Method and results

In order to compare the performance of the three early-stage project predicting methods, we
used a data set of 26 projects from the same organization. The organization is a high-tech company
developing multi-disciplinary products, which include hardware and software integrated into a
variety of products. The project types can be R&D, operational and logistic projects; each project
may include a combination of these types. All of the projects used in this study were executed during
the years 2018 to 2021. The approach we used to compare the three prediction methods included
randomly dividing the projects into two groups. The first group includes 80% of the projects and is
used for training the machine learning and regression models. The second group includes the rest of
the 20% of the projects and is used as a validation set for testing and comparing all three prediction
methods. The random partition for the training set and validation set was performed three times and
yielded three different validation sets A, B and C. This had been done in order to reduce the bias
that a single test may create. The accuracy of the prediction was determined by calculating the Mean
Absolute Error (MAE), the Root Mean Square Error (RMSE) (Willmott and Matsuura 2005) and
the Mean Absolute Percent Error (MAPE) (Goodwin and Lawton 1999) which is described by
equations 5, 6 and 7 respectively.

𝑀𝐴𝐸 = ∑ |𝑇_𝑡𝑟𝑢𝑒𝑖−𝑇_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖|𝑛
𝑖=1

n (5)

𝑅𝑀𝑆𝐸 = √∑ (𝑇_𝑡𝑟𝑢𝑒𝑖−𝑇_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖)2𝑛
𝑖=1

n (6)

𝑀𝐴𝑃𝐸 = ∑ |𝑇_𝑡𝑟𝑢𝑒𝑖−𝑇_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖|𝑛

𝑖=1
n∙|𝑇_𝑡𝑟𝑢𝑒𝑖|

× 100% (7)

Where T_truei represents the true duration of the project i, T_predictioni represents the predicted
duration of the project, i and n represent the number of projects in the data set. A lower value of
MAE, RMSE and MAPE indicates a lower error which means better prediction accuracy. The use
of several types of error measurements, such as MSE, RMSE and MAPE allows one to have different
points of view on the accuracy. In the MSE, all the individual differences are weighted equally in
the average and it is considered to be more accurate than the RMSE, when comparing errors
(Willmott and Matsuura 2005). The RMSE gives a relatively high weight to large errors which gives
a good indication when a large error exists. The use of MAE and the RMSE together allows one to
diagnose the variation in the errors; the RMSE must be bigger or equal to the MAE; if the RMSE is
equal to the MAE, then all the errors are of the same magnitude. As the difference between the
RMSE and MAE is greater, the greater the variance in the individual errors in the sample. The units
of both MAE and RMSE are the same time units as the project duration so it's easier to understand
the estimation delay in terms of time. The MAPE is related to the percentage of the error from the
true value, which allows one to also get a relative point of view on the results. The results of the
comparison are summarized in Table 1. It reveals that the least accurate method for early-stage
project duration predicting is the Gantt chart; the SFR accuracy was better than the Gantt chart and
the MFR prediction was the most accurate. The table includes the MAE, RMSE and MAPE of the
three methods for each one of the three validation sets A, B and C. As can be seen in Table 1, in all
three validation sets the MFR prediction is about twice more accurate than the Gantt chart. The SFR
is also consistently more accurate than the Gantt chart, but less accurate than the MLR.

Table 1. Comparison of Gannt chart, SFR and MLR

Method Validation Set MAE RMSE MAPE
Gantt Chart A 7.17 9.11 28.34%

SFR A 6.46 7.11 36.58%
MLR A 3.6 4.62 14.64%

Gantt Chart B 5.89 7.85 29.56%
SFR B 8.04 10.52 35.61%
MLR B 3.62 3.77 18.92%

Gantt Chart C 12.77 14.29 36.98%
SFR C 6.97 7.11 25.76%
MLR C 6.26 7.53 17.33%

4. Conclusions

The use case presented in the study shows two prediction methods that produce more accurate
predictions than the traditional Gantt chart prediction. The SFR and the MLR is based on records
from past projects, the SFR used a single feature that is usually available for organizations and
therefore the SFR can be implemented in many organizations. The MLR model prediction is more
accurate than the SFR model, but required more data that is not always available in organizations.
The study also shows that even a relatively low amount of recorded projects, 26 in the presented
case study, is enough to significantly improve the prediction accuracy over the traditional Gantt
chart. The SFR and the MLR are relatively easy to implement and can help organizations to improve
their project duration prediction in the very early stages of the project. Future research can apply
these methods to more projects from different organizations to gain more statistical data and find
statistically how much accuracy the SFR and the MLR can achieve.

References

Alami, A. , 2016. Why do information technology projects fail. Procedia Comput. Sci. 100.
Berlin, S., Raz, T., Glezer, C. and Zviran, M., 2009. Comparison of estimation methods of cost
and duration in IT projects. Information and software technology, 51(4), pp.738-748.
Burt, C.D. and Kemp, S., 1994. Construction of activity duration and time management
potential. Applied Cognitive Psychology, 8(2), pp.155-168.
Gantt, H.L., 1903. A graphical daily balance in manufacture.
Goodwin, P. and Lawton, R., 1999. On the asymmetry of the symmetric MAPE. International
journal of forecasting, 15(4), pp.405-408.
Hill, J., Thomas, L.C. and Allen, D.E., 2000. Experts' estimates of task durations in software
development projects. International journal of project management, 18(1), pp.13-21.
Josephs, R.A. and Hahn, E.D., 1995. Bias and accuracy in estimates of task
duration. Organizational Behavior and Human Decision Processes, 61(2), pp.202-213.
König, C.J., 2005. Anchors distort estimates of expected duration. Psychological
Reports, 96(2), pp.253-256.
König, C.J., Wirz, A., Thomas, K.E. and Weidmann, R.Z., 2015. The effects of previous
misestimation of task duration on estimating future task duration. Current Psychology, 34(1).
Lishner, I. and Shtub, A., 2019. Measuring the success of Lean and Agile projects: Are cost,
time, scope and quality equally important?. The Journal of Modern Project Management, 7(1).
López-Martín, C., Chavoya, A. and Meda-Campaña, M.E., 2013, December. Use of a
feedforward neural network for predicting the development duration of software projects.
In 2013 12th International Conference on Machine Learning and Applications (Vol. 2, pp. 15)
Moore, D.A. and Healy, P.J., 2008. The trouble with overconfidence. Psychological
review, 115(2), p.502.
Majid, I. 2006. “Causes and effect of delays in Aceh construction industry.”
Master of Science thesis, Dept. of Civil Engineering, Univ. Technology Malaysia.
Petersen, P.B., 1991. “The evolution of the Gantt chart and its relevance today”. Journal of
Managerial Issues, Vol. 3, no.2, pp.131-155.
White, R.W. and Hassan Awadallah, A., 2019, January. Task duration estimation.
In Proceedings of the Twelfth ACM International Conference on Web Search and Data
Mining (pp. 636-644).
Wiest, J. D. ,1964. Some properties of schedules for large projects with limited
resources. Operations research, 12(3), 395-418.
Willmott, C.J. and Matsuura, K., 2005. Advantages of the mean absolute error (MAE) over the
root mean square error (RMSE) in assessing average model performance. Climate
research, 30(1), pp.79-82.
Wilson, J.M., 2003. Gantt charts: A centenary appreciation. European Journal of Operational
Research, Vol 149, no. 2, pp.430-437.
Zareei, S. (2018). Project scheduling for constructing biogas plant using critical path
method. Renewable and Sustainable Energy Reviews, 81, 756–759.

1

Solving the Assembly Line Balancing Problem with

LocalSolver

Léa Blaise1,2, Thierry Benoist2 and Christian Artigues1

1 LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France
2 LocalSolver, 24 Avenue Hoche, Paris, France

lblaise@localsolver.com

Keywords: local search, ejection chains, packing, solver.

1 Introduction and context

This paper introduces two algorithms implemented in LocalSolver, yielding great results
on problems that present an ordering structure or a packing structure, such as the Assembly
Line Balancing Problem.

LocalSolver is a global mathematical programming solver, whose goal is to offer a
model-and-run approach to optimization problems, including combinatorial, continuous,
and mixed problems, and to offer high quality solutions in short running times, even on
large instances. It allows OR practitioners to focus on the modeling of the problem using
a simple formalism, and then to defer its actual resolution to a solver based on efficient
and reliable optimization techniques, including local search, but also linear, non-linear,
and constraint programming. The local search algorithms implemented in LocalSolver are
described in Gardi et al. (2014).

We focus here on the Assembly Line Balancing Problem, and we show how the algo-
rithms implemented in LocalSolver produce excellent results on this problem. The Assembly
Line Balancing Problem is described as follows. We consider a set of n tasks, of fixed dura-
tion, that are partially ordered by precedence relations. The problem consists in assigning
the tasks to n workstations, while ensuring that the total duration of a workstation’s tasks
does not exceed the cycle time c. The precedence relations between the tasks impose that a
task can be assigned to the same workstation as its predecessors, or to a later workstation,
but cannot be assigned to an earlier workstation. The objective is to minimize the number
of workstations used.

The LocalSolver model for the Assembly Line Balancing Problem is straightforward,
written using set variables. In LocalSolver’s formalism, a set variable of domain n is a deci-
sion variable whose value can be any (unordered) subset of {0, ..., n�1}. Each workstation
S is then modeled using a set variable of domain n, whose value is equal to the set of tasks
it contains. Since each task must be assigned to exactly one workstation, we constrain the
set variables to form a partition of {0, ..., n� 1}.

2 Greedy algorithm

In this Section, we introduce a greedy algorithm, working both as an initialization
algorithm and as a “destroy and repair” local move, taking the capacity and precedence
constraints into account. The implementation of this algorithm being as generic as possible,
it is not only applicable to the Assembly Line Balancing Problem, but to any problem
presenting an ordering structure and a packing structure on its set variables.

2

2.1 Building an initial feasible solution

In the LocalSolver model for the Assembly Line Balancing Problem, the precedence
constraint between two tasks t1 and t2 is written:

constraint find(stations, t1) <= find(stations, t2); (1)

The find operator takes two arguments: an array of set variables of domain n and an
integer expression between 0 and n � 1, and returns the index of the set variable which
contains the requested element (or -1 if none of the set variables contain the element). The
constraint written above then reads “The chosen workstation for task t1 must be lower or
equal to the chosen workstation for task t2”.

When such precedence constraints are detected in the model, an ordering on the set
variables can be deduced. We can then build an initial solution verifying the precedence
constraints between the tasks, as well as the capacity constraints on the workstations. The
initialization algorithm is as follows. Let S0, ..., Sn�1 be the set variables of the model
(in increasing order). Each set variable is initially empty. An element 0  t  n � 1
(representing a task in the case of the Assembly Line Balancing Problem) is said to be
eligible for insertion into a set variable S if all of its predecessors have already been assigned
to a set variable, and if its weight (the task’s duration) is lower than the remaining space
in S (its capacity minus the total weight of the elements it already contains). Let E be the
set of eligible elements. The first set to be filled is S = S0. While the set of eligible elements
is non empty, an element t 2 E is randomly chosen, and inserted into S. The set of eligible
elements is then updated accordingly. When there is no eligible element anymore, we move
on to the next set variable, until every element has been assigned to a set variable. The
complexity of this algorithm is O(n2).

This algorithm allows LocalSolver to immediately obtain a first feasible solution for
any instance of the Assembly Line Balancing Problem. This is particularly useful on the
large instances, for which finding a feasible solution from a random assignment of the set
variables’ elements could take several seconds.

2.2 “Destroy and repair” local move

The greedy algorithm described in 2.1 can be adapted to be integrated into LocalSolver’s
local search component as a “destroy and repair” local move. Indeed, we can choose to apply
it to fill a subset of the model’s set variables rather than all of them. For example, in the
case of the Assembly Line Balancing Problem, we can choose to apply it not to distribute
the whole set of tasks into the different workstations, but to reorganize the tasks already
assigned to a subset of workstations only. When applying this local move, the current
solution is re-optimized by destroying and then rebuilding part of the solution.

To further diversify the explored solutions, the algorithm can either by applied by
increasing order of the set variables (as in the initialization algorithm described in 2.1), or
by decreasing order of the set variables.

3 Packing move based on ejection chains

In this Section, we describe another local move implemented inside LocalSolver’s local
search component, which makes use of the packing structure detected in the model (the
total duration of a workstation’s tasks must be lower than the cycle time). This local
move is based on ejection chains: it consists in a series of element movements from one set
variable to another. The move is similar to one of the algorithms described by Capua et al.
(2018) to solve the Bin Packing Problem with Conflicts. The authors also describe a local

3

move based on ejection chains, with several differences. In their algorithm, all the sets and
elements of the problem are considered, and a random ordering of the sets is imposed (an
element can only be moved from its current set to another set of higher index). On the
contrary, our local move only focuses on a subset of unordered set variables.

The local move’s procedure is as follows. We start by choosing a random subset of the
model’s set variables. Let S be the set variable with the smallest weight among all chosen
sets. An element t 2 S is randomly chosen to be ejected from S. The goal of the local
move is to reorganize the other selected set variables’ elements, so that t can be inserted
into one of them. If t can be inserted into a new set variable S? without violating the
capacity constraint on S?, t is assigned to S?. The move is successful. If not, we try to
swap it with another, strictly smaller element. In order to do this, we consider the smallest
element t0 /2 S that can be replaced by t. If no such element exists, or if the weight of t0 is
larger than that of t, the local move results in failure, and we revert back to the previous
solution. Otherwise, t0 is ejected from its current set variable S0, so that t can be inserted
in its place. The same procedure is then repeated, with t0 as the new current element, until
the move ends in either success or failure. Since the weights of the ejected elements are
strictly decreasing, the move ends in at most N steps, where N is the total number of
elements in the selected subset of set variables. The complexity of each step is O(N).

Figure 1 illustrates the local move’s procedure on a small example with eight elements
distributed into five set variables. The first element to be moved is 7, then 0, then 4, and
finally 6.

Sk0 1 2 3 4

capacity

1

0

2
3

4

5

6

7

)

Sk0 1 2 3 4

capacity

1

7

2

6

3

0

5

4

Fig. 1. Example – Solutions before (left) and after the local move (right)

This local move is particularly effective on the most combinatorial instances, in which
each set variable contains very few elements. Indeed, if the smallest set variable selected
contains only one element, and if the move is successful, the solution is improved (assuming
that the number of used set variables is to be minimized). However, it is also useful on other
types of instances, since it increases the weight gaps between the different set variables,
which makes it easier to find improvements in the following iterations.

This local move can be applied to any problem presenting a packing structure. It im-
proves LocalSolver’s performance on various problems, such as the Bin Packing Problem,
and the Assembly Line Balancing Problem.

4 Numerical results

We compare the performance of LocalSolver 10.5, CP Optimizer 20.1.0, and Gurobi
9.1, on the Assembly Line Balancing Problem, in 60 and 600 seconds of running time. The
models we use to evaluate the performance of CP Optimizer and Gurobi are respectively
given by Laborie (2020) and Pastor et al. (2007). We use the instances of the “very large”
dataset proposed by Otto et al. (2013). The dataset includes 525 instances of 1000 tasks

4

to assign. The metric used is the gap to the best known solution, equal to the minimum
between the best known solution given in (Otto et al. 2013) and the value yielded by
LocalSolver after 10 minutes of running time. Indeed, LocalSolver improves the result given
by the authors of the article on 59% of the instances. In Table 1, we give the percentage
of feasible instances, the percentage of instances for which each solver reaches a solution
within 1% of the best known solution, as well as the average gap.

Table 1. Comparison of LocalSolver’s, CP Optimizer’s, and Gurobi’s performance – 1000 tasks

LocalSolver CP Optimizer Gurobi
60s 600s 60s 600s 60s 600s

Feasible instances 100% 100% 100% 100% 0% 0%
Instances w. gap < 1% 95% 99% 59% 64% 0% 0%

Average gap 0.4% 0.1% 2.1% 1.7% – –

We can see that LocalSolver’s performance is significantly better than that of the other
two solvers. The performance gap between LocalSolver and CP Optimizer is particularly
striking on the most combinatorial instances, which are considered to be the most difficult.

The algorithms we describe here are however not dedicated to the Assembly Line Bal-
ancing problem, and can improve LocalSolver’s performance on other problems as well. For
example, the integration of the local move described in 3 into LocalSolver’s local search
enables it to get strictly better results on 58% of the very hard Bin Packing instances pro-
posed by Gschwind and Irnich (2016), lowering the average gap to the best known lower
bound from 0.44% to 0.36%.

5 Conclusion

In this paper, we considered a family of problems presenting a packing structure, such as
the Bin Packing Problem, and an ordering structure, such as the Assembly Line Balancing
Problem. We introduced a greedy algorithm, making use of both kinds of structures to
build feasible solutions. We showed how it can be used both as an initialization algorithm
and as a “destroy and repair” local move. We also introduced a packing move based on
ejection chains, particularly efficient on the most combinatorial packing instances. Their
integration into LocalSolver enables it to obtain great results on the targeted problems.

References

Gardi F., T. Benoist, J. Darlay, B. Estellon, and R. Megel, 2014, Mathematical Programming
Solver Based on Local Search, Wiley.

Alena Otto and Christian Otto and Armin Scholl. Systematic data generation and test design for
solution algorithms on the example of SALBPGen for assembly line balancing, 2013, European
Journal of Operational Research.

Timo Gschwind and Stefan Irnich. Dual inequalities for stabilized column generation revisited,
2016, INFORMS Journal of Computing.

Renatha Capua, Yuri Frota, Luiz Satoru Ochi, and Thibaut Vidal. A study on exponential-size
neighborhoods for the bin packing problem with conflicts, 2018, Journal of Heuristics.

Philippe Laborie. Solving the Simple Assembly Line Balancing Problem with CP
Optimizer, 2020, https://www.linkedin.com/pulse/solving-simple-assembly-line-balancing-
problem-cp-philippe-laborie/.

Pastor, Rafael and Ferrer, Laia and García, Alberto. Evaluating optimization models to solve
SALBP, 2007, Lecture Notes in Computer Science.

1

A time-based schedule-generation scheme for project
scheduling with storage resources

Mario C. Sillus and Christoph Schwindt

Clausthal University of Technology, Germany
{mario.christian.sillus,christoph.schwindt}@tu-clausthal.de

Keywords: schedule-generation scheme, storage resources, dynamic release dates, gener-
alized precedence relations.

1 Introduction

Storage resources model material stocks or liquid funds, which are depleted and replenished
at the occurrence of certain events during the execution of a project. Both renewable and
nonrenewable resources are special cases of storage resources. Project scheduling subject
to storage-resource constraints and generalized precedence relations consists in sequencing
the events in such a way that the inventories of the storage resources evolve within given
bounds and prescribed minimum and maximum time lags between the events are met.

The problem was introduced by Neumann and Schwindt (2002), who addressed struc-
tural issues, generated benchmark data sets, and devised a branch-and-bound algorithm
enumerating disjunctions of precedence relations. Laborie (2003) presents consistency tests
and an effective constrained-based branch-and-bound algorithm solving all remaining open
instances. Carlier et al. (2009) consider a special case with a single resource of infinite
capacity. They report on complexity results and propose polynomial-time algorithms to
compute an optimal schedule for a given sequence of events. Carlier et al. (2018) propose
tight lower bounds for the instances of Neumann and Schwindt.

In this paper, we present a time-based schedule-generation scheme that is intended
to serve as a building block for metaheuristic schedule-improvement procedures for large
problem instances. The method decodes an event list into a feasible schedule by iteratively
resolving resource conflicts.

The remainder of this paper is organized as follows. In Sect. 2 we provide a concep-
tual model formulation and briefly review structural properties of the problem. The basic
schedule-generation scheme and several enhancements are developed in Sect. 3. In Sect. 4
we report on computational results obtained on a standard data set from literature.

2 Problem statement

We consider a project employing several storage resources k ∈ R. During project execution,
the inventory level of each resource k must remain within a given nonempty interval [Rk, Rk]
with Rk ∈ Z ∪ {−∞} and Rk ∈ Z ∪ {∞}. The inventory levels of resources k ∈ R change
upon occurrences of events i = 1, . . . , n, which typically coincide with project milestones
or starts and completions of project activities. Upon occurrence of event i, the inventory
levels of resources k change by rik ∈ Z units. We say that i replenishes the inventory of
k if rik > 0 and i depletes the inventory of k if rik < 0. The set V of all events also
contains two fictitious events i = 0 and i = n + 1 standing for the project start and
termination, respectively, where r0k is the opening stock level of resource k and without
loss of generality r(n+1)k = 0. For certain pairs (i, j) ∈ A of events i, j ∈ V , a minimum time
lag δij ∈ Z between the occurrences of i and j is prescribed. If δij < 0, the value −δij can
be viewed as maximum time lag between events j and i. The project scheduling problem
(PSc|temp|Cmax) under consideration consists in assigning occurrence times ti ≥ 0 to all
events i ∈ V in such a way that (1) a given regular (i. e., componentwise nondecreasing)

2

objective function f in vector t = (ti)i∈V is minimized, (2) the resource constraints arising
from the storage resources and (3) the generalized precedence relations defined by the time
lags are satisfied, and (4) the project is started at time 0.

(PSc|temp|f)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Min. f(t) (1)
s. t. Rk ≤

∑

i∈V :ti≤tj

rik ≤ Rk (j ∈ V ; k ∈ R) (2)

tj − ti ≥ δij ((i, j) ∈ A) (3)
t0 = 0 (4)

Problem PSc|temp|f generalizes the classical problem PS |temp|f with renewable re-
sources, whose feasibility variant is known to be strongly NP-hard. In difference to the
case of renewable resources, finding a feasible schedule for the more general problem with
storage resources remains NP-hard even if |R| = 1 and δij > 0 for all (i, j) ∈ A.

3 Schedule-generation scheme

Let Π be the set of all precedence-feasible permutations π on set V , i. e., the set of all event
lists π = (0, i1, . . . , in, n + 1) with λ < µ if dij ≥ 0 and dji < 0 for i = iλ and j = iµ. By
S′ we denote the set S of all feasible schedules t plus an infeasible schedule t

∞ serving to
indicate that no feasible schedule could be found. Basically, a schedule-generation scheme
(SGS) is a mapping σ : Π → S′ assigning a schedule t

′ ∈ S′ to each permutation π ∈ Π.

3.1 Basic scheme

Traditional schedule-generation schemes, like the serial SGS for problems with renewable
resources, schedule the activities one by one in the order given by permutation π. In
each iteration, the respective partial schedule represents a feasible solution to the problem
defined on the set of activities scheduled thus far. Deadlocks caused by maximum time
lags are resolved using unscheduling techniques. Given that preserving the feasibility of a
partial schedule would generally require the simultaneous addition of several events and
that finding such a set constitutes an NP-hard problem, we opt for a different approach,
which draws from an enumeration scheme with dynamic activity release dates devised by
Fest et al. (1998) for the project duration problem PS |temp|Cmax. The basic idea consists
in first relaxing the resource constraints and then iteratively resolving inventory shortfalls
or excesses by defining release dates δ0j for appropriate events j, which are determined
by their position in π. The principle to (pre-)select the events to be postponed via a
permutation can be interpreted as a linear preselective strategy (Stork 2001).

Our time-based SGS is displayed in Algorithm 1. Let D = (dij)i,j∈V denote the distance
matrix containing the transitive time lags dij implied by prescribed time lags δij . In each
iteration of the SGS, we consider the current earliest schedule et = (d0i)i∈V with t0 = 0
and satisfying all time lags δij for (i, j) ∈ A and release dates δ0j introduced so far.
Schedule et is then scanned for the earliest time t at which a resource conflict occurs, i. e.,
rk(et, t) :=

∑

i∈V :eti≤t rik /∈ [Rk, Rk] for some k. If Rk ≤ rk(et, t) ≤ Rk for all k ∈ R and
all t ≥ 0, the SGS is terminated by returning feasible schedule et. Otherwise, we compute
the set C of all events j ∈ V that contributed to the resource conflict on k. To resolve the
conflict, at least one event j ∈ C has to be delayed to the earliest occurrence time eti > t
of an event i with the opposite resource requirement, i. e., rik · rjk < 0. Event j can be
synchronized with event i precisely if dji ≤ 0. The event that is actually deferred is the
last element j ∈ C on list π possessing such a partner event i. If no such event j exists, the
SGS is stopped and infeasible schedule t

∞ is returned. Otherwise, the new release date δ0j

is set to t∗
j := min{eti | i ∈ V, eti > t, rik · rjk < 0, dji ≤ 0}. Finally, δ0j is added to

distance matrix D by updating d0l := max{d0l, t∗
j + djl} for all events l ∈ V .

3

Algorithm 1 Basic schedule-generation scheme SGS(π)

1: compute distance matrix D = (dij)i,j∈V of time lags (δij)(i,j)∈A;
2: loop
3: set earliest schedule et := (d0i)i∈V ;
4: determine earliest time t at which a resource conflict occurs on some resource k ∈ R;
5: if t = ∞ then return et; (∗ feasible schedule has been generated ∗)
6: if rk(et, t) < Rk then set conflict set C := {j ∈ V | etj ≤ t, rjk < 0};
7: else set conflict set C := {j ∈ V | etj ≤ t, rjk > 0};
8: determine last event j ∈ C on π with t∗

j := mini∈V {eti | eti > t, rik · rjk < 0, dji ≤ 0} < ∞;
9: if there is no such event j then return t

∞; (∗ no feasible schedule could be found ∗)
10: else put d0l := max{d0l, t∗

j + djl} for all l ∈ V ; (∗ add δ0j = t∗
j and update D ∗)

3.2 Expansions

E1: Randomization. Given that we add release dates δ0j = t∗
j and not precedence

relations δij = 0, the SGS can encounter a so-called leapfrogging phenomenon that may
cause cycling in an infinite loop of mutual shifting among three or more events. To get
out of leapfrogging, it proves expedient to introduce a pinch of randomness when selecting
event j. More precisely, let C′ := {j ∈ C | t∗

j < ∞, (djj′ < 0) ∨ (dj′j ≥ 0) for all j′ ∈ C}
be the set of candidates to deferment. Starting with the last j ∈ C′ in π, we accept j as
the event to be delayed with probability p < 1. If j was rejected, we recursively proceed
with the preceding j ∈ C′ in π until some j ∈ C′ was accepted, where we return to the last
j ∈ C′ in π if the first event j ∈ C′ was rejected. The number of iterations follows geometric
distribution Geo(p). Consequently, it suffices to draw a random number z from distribution
Geo(p) and to select the mth element j ∈ C′ in π with m := |C′| − (z − 1) mod |C′|.

E2: Preservation of feasible initial inventories. If the problem instance is feasible
and no deadlines −dj0 < ∞ are imposed on the occurrence of events j ∈ V , Algorithm 1
can only be quitted without feasible schedule if the initial inventory level rk(et, 0) is not
within the bounds Rk and Rk. The reason is that due to constraint t0 = 0, conflicts at
time t = 0 may become unsolvable if r0k /∈ [Rk, Rk]. If such a resource k with infeasible
opening stock exists, we should avoid right-shifting any event l with etl = 0 while removing
an infeasibility at time t > 0. When performing the update of distance matrix D, delaying
event j to time t∗

j leads to an increase of d0l exactly if t∗
j + djl > etl. Accordingly, we

impose the additional condition t∗
j ≤ min{−djl | l ∈ V : etl = 0} on the selection of

event j, provided that at least one event from set C′ satisfies this condition.

E3: Schedule contraction. Despite the additional condition introduced in expansion E2,
we may still encounter situations in which there does not exist any j ∈ C′ when dealing
with a conflict at time t = 0. Since in general r0k ̸= 0, it might be useful to synchronize
j = 0 with the next appropriate event i for solving the conflict. In the basic SGS, however,
condition dji ≤ 0 prevents j = 0 from being moved because eti = d0i > 0 contradicts
dji = d0i ≤ 0. Instead of delaying j = 0, the schedule contraction technique performs an
equivalent relative movement between events by left-shifting event i and further events l.
To this end, we put d0l := max{d̂0l, d0l − eti} for all l ∈ V , where d̂0l stands for the initial
earliest occurrence times computed on line 1 of Algorithm 1. Schedule contraction allows
us to entirely avoid premature terminations of the SGS.

E4: Postprocessing. Randomizing the selection of event j reliably prevents long leapfrog-
ging phases. Nevertheless, leapfrogging cannot be avoided completely, and thus the schedule
et yielded by the SGS often fails to be quasiactive (Neumann et al. 2003, Sect. 2.4). In this
case, et can be further compressed by applying the following postprocessing procedure. For
each pair (i, j) with etj ≥ eti and rik ·rjk < 0 for some k ∈ R we put d̂ij := max{d̂ij , 0} and
restore the transitivity of matrix D̂ by applying the Floyd-Warshall algorithm. Since et is
resource-feasible, any schedule t satisfying the temporal constraints tj ≥ ti+d̂ij is feasible as
well. In particular, this holds true for the compressed earliest schedule et

′ = (d̂0j)j∈V ≤ et.

4

4 Computational experiments

We tested the performance of different versions of the SGS using the solvable instances of
the project duration problem with n = 100 events and 5 storage resources from Neumann
and Schwindt (2002). The test set contains 90 randomly generated instances, 57 of which
possess a feasible solution. We considered three types of precedence-feasible permutations π:
the et-list, which orders the events according to nondecreasing earliest occurrence times,
the lt-list, where events are arranged in order of nondecreasing latest occurrence times, and
randomly generated lists. In total, we carried out the four experiments listed in Table 1.

Experiments A to D stepwise introduce extensions E1 to E3 into the basic SGS with
postprocessing E4. For each instance, 100 executions of the SGS are distributed over the
list types as shown in the second column of the table. The CPU time limit was set to 10 ms
per execution, and the smallest project duration found in previous runs was defined as a
deadline. While the randomization in experiment A comes from outside the SGS via the
event lists, the randomization in B to D is implemented inside the SGS via acceptance
probability p < 1 (we chose p = 0.4). The SGS was implemented in Java 11 under Eclipse
and ran on a PC with one core and 4 GHz clock pulse operating under Windows 10.

In the right part of Table 1 we list the mean percentages popt, pfeas, and pno of op-
timally solved, feasibly, but not optimally solved, and unsolved instances averaged over
ten replications for each experiment. ∆opt stands for the relative optimality gap of the
instances solved to feasibility by the respective SGS version. All percentages refer to the
best schedules found for each instance. Symbol tcpu denotes the mean CPU time for 100
runs per instance in seconds.

Table 1. Experimental design and computational results

Experiment #et/#lt/#rand Expansions popt [%] pfeas [%] pno [%] ∆opt [%] tcpu [s]
A 1/1/98 E4 64.4 23.1 12.4 1.12 0.34
B 50/50/0 E1, E4 80.0 10.9 9.1 0.32 0.12
C 50/50/0 E1, E2, E4 91.4 5.8 2.8 0.29 0.16
D 50/50/0 E1 – E4 93.0 5.6 1.5 0.41 0.25

The successive additions of extensions consistently lead to higher percentages of opti-
mally and of feasibly solved instances. In particular, the fully equipped SGS achieves good
results with more than 90 % of instances solved to optimality and a mean optimality gap
of 0.24 %, while the computational effort remains in reasonable order of magnitude.

In a further experiment we ran the SGS with expansions E1, E3 and the et and lt lists
without time limit. As expected, the method delivered a feasible solution to each instance,
which averaged over ten replications took 2.77 s for the et and 0.9 s for the lt list.

References

Carlier J., A. Moukrim, H. Xu, 2009, “The project scheduling problem with production and
consumption of resources: A list-scheduling based algorithm”, Discrete Appl Math, Vol. 157,
pp. 3631–3642.

Carlier J., A. Moukrim, A. Sahli, 2018, “Lower bounds for the event scheduling problem with
consumption and production of resources”, Discrete Appl Math, Vol. 234, pp. 178–194.

Fest A., R. H. Möhring, F. Stork, M. Uetz, 1998, “Resource-constrained project scheduling with
time windows: A branching scheme with dynamic release dates”, Working Paper 596, Fachbe-
reich Mathematik, TU Berlin.

Laborie P., 2003, “Algorithms for propagating resource constraints in AI planning and scheduling:
Existing approaches and new results”, Artif Intell, Vol. 143, pp. 151–188.

Neumann, K., C. Schwindt, 2002, “Project scheduling with inventory constraints”, Math Method
Oper Res, Vol. 56, pp. 513–533.

Neumann, K., C. Schwindt, J. Zimmermann, 2003, “Project Scheduling with Time Windows and
Scarce Resources”. Springer, Berlin

Stork, F., 2001, “Stochastic Resource-Constrained Project Scheduling”. PhD Thesis, TU Berlin

1

Logic-based Benders Decomposition for preemptive

Flexible Job-Shop Scheduling

Carla Juvin1, Laurent Houssin1,2, and Pierre Lopez1

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
{carla.juvin,pierre.lopez}@laas.fr

2 ISAE-SUPAERO, Université de Toulouse, France
laurent.houssin@isae-supaero.fr

Keywords: Flexible job-shop scheduling, preemption, Benders decomposition.

1 Introduction

In this paper, we address the preemptive flexible job-shop scheduling problem (pFJSSP).
We propose three exact methods to solve the pFJSSP with makespan minimization objec-
tive: a Mixed Integer Linear Programming (MILP) formulation, a Constraint Programming
(CP) formulation, and a Logic-Based Benders Decomposition (LBBD) algorithm.

The job-shop scheduling problem (JSSP) is one of the most studied NP-hard optimiza-
tion problems. It consists of a set of jobs and a set of machines. Each job has a sequence
of operations, each of which must be performed on a given machine. In order to satisfy
present market, the production environment becomes more and more complex and flexible.
The flexible job-shop problem(FJSSP) is an extension of the classical JSSP that allows an
operation to be processed on any machine from a set of eligible machines.

The FJSSP has received considerable attention and both metaheuristics and exact
methods have been developed to solve this problem (Brandimarte (1993), Shen et al.
(2018)). Moreover, preemption is another important parameter when dealing with schedul-
ing problems as it can have a positive impact on the objective function. The preemptive
job-shop scheduling problem (pJSSP) has received limited attention and most of literature
focus on approximation algorithms rather than exact methods. Among the exact meth-
ods, Le Pape and Baptiste (1998) develop a constraint programming approach, Ebadi and
Moslehi (2013) model the pJSSP with a disjunctive graph and develop a branch-and-bound
algorithm. To the best of our knowledge, only one study (Zhang and Yang (2016)) consid-
ers both preemption and flexibility for the JSSP. However, the problem addressed in this
work has special characteristics (flexible workdays and overlapping in operations) that are
not considered here.

Problem statement. An instance of the pFJSSP is defined as a set of n jobs J =

{1, . . . , n} and a set of machines M. Each job i consists of a sequence of ni operations
Oi = (i

1

, . . . , ini). An operation Oi,j 2 Oi of a job i must be performed by one of the
machine from the set of eligible machines Mi,j ✓ M. Let pi,j,m denote the processing time
of operation Oi,j that is processed on machine m 2 Mi,j . Each machine can process at
most one operation at a time and preemption is allowed: the processing of operations can be
interrupted and resumed later without penalty. Although an operation can be interrupted,
it is assumed that it must be fully processed by one and the same machine.

2 Mathematical and Constraint programming models

Let us introduce a model that can be used as a mixed-integer program to solve the
pFJSSP. It is based on a time-indexed formulation proposed by Bowman (1959) to solve the

2

preemptive job-shop problem. We have adapted it to add the notion of resource flexibility.
Let H = {1, 2, 3, . . . , h} be the time horizon. The (binary) decision variables are defined as
follows:

– xi,j,m is equal to 1 if operation Oi,j is processed on machine m;
– yi,j,t is equal to 1 if operation Oi,j is in process at time t,

and the model:
minC

max

(1)

s.t.
X

m2Mi,j

xi,j,m = 1 8i 2 J , Oi,j 2 Oi (2)
hX

t=1

yi,j,t �
X

m2Mi,j

xi,j,m ⇥ pi,j,m 8i 2 J , Oi,j 2 Oi (3)
hX

t0=t

yi,j,t0  max

m2Mi,j

pi,j,m ⇥ (1� yi,j+1,t) 8i 2 J , Oi,j 2 Oi \ {Oi,ni}, t 2 H (4)
X

i2J

niX

j=1

xi,j,m ⇥ yi,j,t  1 8m 2 M, t 2 H (5)

C
max

� (t+ 1)⇥
X

i2J
yi,ni,t 8t 2 H (6)

xi,j,m 2 {0, 1} 8i 2 J , Oi,j 2 Oi, m 2 Mi,j (7)

yi,j,t 2 {0, 1} 8i 2 J , Oi,j 2 Oi, t 2 H (8)

Note that Constraints (5) are nonlinear, but can be easily linearized since variables xi,j,m

and yi,j,t are binary, the previous mathematical model thus becoming a MILP model.
Moreover, we propose another formulation of the problem using Constraint Program-

ming. It is based on a formulation proposed by Polo-Mejía et al. (2020) to solve the Multi-
Skill Project Scheduling Problem with partial preemption. We have adapted it to solve the
pFJSSP. We introduce the following decision variables: Ii,j represents the interval variable
between the start and the end of the processing of operation Oi,j . Since activities can be
performed in multiple machines, we introduce an optional interval variable modei,j,m for
each possible combination of an operation Oi,j and a machine m. Each operation Oi,j is
divided into pi,j,m parts of unit duration, the optional variable parti,j,k,m representing the
interval during which the kth part of the operation Oi,j is processed if it is executed on
machine m.

minC
max

(9)

s.t. C
max

� Ii,ni .end 8i 2 J (10)

endBeforeStart(Ii,j , Ii,j+1

) 8i 2 J , Oi,j 2 Oi \ {ini} (11)

endBeforeStart(parti,j,k,m, parti,j,k+1,m)

8i 2 J , Oi,j 2 Oi, m 2 Mi,j , k 2 1, . . . , pi,j,m � 1 (12)

span(modei,j,m, parti,j,k,m : 8k 2 1, . . . , pi,j,m) 8i 2 J , Oi,j 2 Oi, m 2 Mi,j (13)

alternative(Ii,j ,modei,j,m : 8m 2 Mi,j) 8i 2 J , Oi,j 2 Oi (14)

presenceOf(modei,j,m)) presenceOf(parti,j,k,m)

8i 2 J , Oi,j 2 Oi, m 2 Mi,j , k 2 1, . . . , pi,j,m (15)

noOverlap(parti,j,k,m : 8i 2 J , j 2 1, . . . , ni, k 2 1, . . . , pi,j,m) 8m 2 M (16)

3

3 Logic-based Benders decomposition

A logic-based Benders decomposition approach (Hooker (2007)) is proposed to solve the
problem under consideration. It consists in dividing the problem into a machine assignment
master problem and a preemptive job-shop scheduling subproblem.

The master problem is an assignment problem, each operation needs to be assigned
to a machine. The decision variable xi,j,m is equal to 1 if operation Oi,j is processed on
machine m. We propose the following MILP model:

minC
max

(17)
X

m2M

xi,j,m = 1 8i 2 J , Oi,j 2 Oi (18)

Benders’ cuts (19)

xi,j,m 2 {0, 1} (20)

However, at first iteration as there is no Benders cut, there is no link between assign-
ment variables xi,j,m and the objective value C

max

. That is why we propose to include a
subproblem relaxation in the master problem. The subproblem relaxation is based on the
following three ideas:

1. The makespan is at least equal to the sum of the processing times of the operations of
the same job.

2. The makespan is at least equal to the sum of the processing times of the operations
assigned to the same machine.

3. Let consider a subset of operations assigned to the same machine. The makespan is at
least equal to the following quantity: the minimum release date of the subset plus the
sum of the processing times of the operations of the subset plus the minimum delivery
time of the job of the last processed operation of this subset.

At each iteration we obtain a feasible solution Ph = {(i, j,m) |xi,j,m = 1} of the master
problem which contains all assignments. Then, the subproblem consists in a pJSSP, which
can be solved by two different methods:

– a CP model similar to the one proposed for the pFJSSP, but for which the set of eligible
machines Mi,j for each operation Oi,j is reduced to the machine m assigned by the
master problem (i, j,m) 2 Ph;

– a Branch-and-Bound algorithm proposed by Ebadi and Moslehi (2013).

When the subproblem is solved, we obtain the optimal makespan Ch
max

for a given
assignment Ph. We can deduce the following cut:

C
max

� Ch
max

⇣
1�

X

(i,j,m)2Ph

(1� xi,j,m)

⌘
(21)

At each iteration, this cut is added to the master problem as a Benders cut, and the master
problem is resolved with this new constraint.

4 Numerical results and Conclusions

For computational tests, we use CPLEX for solving the MILP model and CP Optimizer
for the CP model. The computation time was limited to 10 minutes. We use classical
instances for the FJSSP3. Table 1 shows the results. The first column shows the benchmarks

4

Table 1. Number of pFJSSP instances proved to be optimal within 10 min CPU

Benchmark MILP CP LBBD (sp:CP) LBBD (sp:B&B)
Brandimarte (15) 0 5 9 9
Hurink edata (66) 1 2 9 24
Hurink rdata (66) 1 1 1 20
Hurink vdata (66) 1 2 7 25

DPPaulli (18) 0 0 0 0
ChambersBarnes (21) 0 0 0 0

Kacem (4) 3 3 4 4
Fattahi (20) 8 12 13 17

under study (and the number of instances they contain), the following ones the number of
instances solved to optimality using the methods described in the previous sections.

According to our computational experiments, CP method is superior to the MILP one
and solves more instances to optimality. On the other hand, we can see that the pFJSSP
benefits from the decomposition since LBBD methods are more efficient compared to the
others. More specifically, solving the subproblem using Branch-and-Bound (fifth column)
is faster than using CP (fourth column) and thus enables to solve a greater number of
instances. We also notice that for the most difficult benchmarks (DPPaulli and Chambers-
Barnes) no instance could be solved optimally by any of these methods within 10 minutes.

Conclusion. We have proposed three methods to solve the pFJSSP where the objective
is the minimisation of the makespan: a mathematical model, a constraint programming
model, and a logic-based Benders decomposition algorithm. Numerical results have shown
that the MILP becomes inefficient for difficult instances. Also, our logic-based Benders
decomposition outperforms mathematical programming and constraint programming to
find optimal solutions. Our current work consists in improving the solving methods, in
particular the decomposition ones to further increase the number of solved instances.

References

Brandimarte P., 1993, “Routing and scheduling in a flexible job shop by tabu search”, Annals of
Operations Research, Vol. 41, pp. 157-183.

Bowman E.H., 1959, “The schedule-sequencing problem”, Operations Research, Vol. 07, pp. 621-
624.

Ebadi A. and Moslehi G., 2013, “An optimal method for the preemptive job shop scheduling
problem”, Computers & Operations Research, Vol. 40, pp. 1314-1327.

Hooker J., 2007, “Planning and scheduling by logic-based Benders decomposition”, Operations
Research, Vol. 55, pp. 588-602.

Le Pape C. and Baptiste P., 1998, “Resource constraints for preemptive job-shop scheduling”,
Constraints: An international journal, Vol. 03, pp. 263-287.

Polo-Mejía O., Artigues C., Lopez P., and Basini V., 2020, “Mixed-integer/linear and constraint
programming approaches for activity scheduling in a nuclear research facility”, International
Journal of Production Research, Vol. 58, pp. 7149-7166.

Shen L., Dauzère-Pérès S. and Neufeld J. S., 2018, “Solving the flexible job shop scheduling problem
with sequence-dependent setup times”, European Journal of Operational Research, Vol. 265,
pp. 503-516.

Zhang J. and Yang, J. 2016, “Flexible job-shop scheduling with flexible workdays, preemption,
overlapping in operations and satisfaction criteria: an industrial application”, International
Journal of Production Research, Vol. 54, pp. 4894-4918.

3
http://opus.ub.hsu-hh.de/volltexte/2012/2982/ – Last accessed October 2021

1

Large neighborhood search for a multi-mode resource

constrained scheduling problem with resource leveling

objective

Tom Portoleau1,2, Christian Artigues1, Tamara Borreguero Sanchidrián3,4, Alvaro García
Sánchez4, Miguel Ortega Mier4 and Pierre Lopez1

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
{tom.portoleau,christian.artigues,pierre.lopez}@laas.fr

2 IRIT, CNRS and University of Toulouse, France
3 AIRBUS. Paseo John Lennon S/N. Getafe (28906) Spain

tamara.borreguero@airbus.com

4 Industrial Engineering and Logistics Research Group, ETSII, Universidad Politécnica de
Madrid. José Gutierrez Abascal 2 (28006) Madrid
{alvaro.garcia,miguel.ortega.mier}@upm.es

Keywords: multi-mode resource-constrained project scheduling, resource leveling, con-
straint programming, large neighborhood search.

1 Introduction

The aeronautical industry has experienced an in-depth transformation in the last years.
The demand for aircrafts has increased but also the complexity and customization of the
products. As a result, aircraft manufacturers have had to produce more units of more
complex aircrafts while trying to reduce time to market, production lead times and costs. In
line with these objectives, this paper proposes solution methods for the detailed scheduling
of stations in an aircraft final assembly line. This problem, described in (Borreguero et.

al. 2021), can be classified as a multi-mode resource-constrained project scheduling problem
(MMRCPSP) with a resource leveling objective. In (Gerhards 2020) the author proposes a
constraint programming (CP) model to solve the multi-mode resource investment problem
(MMRIP). Formally, this problem is very similar to the assembly line scheduling problem
at stake here. The notable differences are, firstly, the presence of non-renewable resources,
and secondly, a slightly different objective function, as it considers a weighted sum of the
maximums of the resources used, while the assembly line scheduling problem considers
the maximum peak objective without weights. We propose a large neighborhood search
(LNS) heuristic with neighborhoods tailored to the resource-leveling objective, with the
aim to improve the performance of the CP exact methods and of the heuristic approach
currently used by the company on large-scale industrial instances. As a result, the large-
neighborhood search approach significantly improves the heuristic currently used by the
aircraft manufacturer for assembly line scheduling. It also brings significant improvements
to the method proposed by (Gerhards 2020) in the multimode resource investment problem
when short CPU times are required.

2 Problem statement and constraint programming formulation

In the assembly line scheduling problem the maximum cycle time CT is fixed. We have a
set of tasks W with a release date 0 and a due date CT . We have a set P of operator profiles
and a set A of station areas. Each task w 2 W can be performed by a subset P

w

✓ P of
operators profiles and by a number of operators that must lie in M

w

= {MN

w

, . . . ,MX

w

}.
The baseline duration of a task w 2 W is denoted by D

w

. If task w 2 W is performed

2

by o 2 M

w

operators of profile p 2 P

w

, we apply a reduction coefficient �

opw

such that
its duration is equal to �

opw

D

w

. Furthermore, each task is performed in an area indicated
by A

aw

= 1 if task is performed in area a 2 A. Each area has a maximum capacity of C
a

operators. There is also a set PR of standard precedence constraints such that (w,w0) 2 PR

means that w

0 cannot start before the end of w, a set NP of non-overlapping constraints
between pairs of tasks such that {w,w0} 2 NP means that w and w

0 cannot be processed
in parallel and a set MT of maximal time lag constraints such that (w,w0) 2 MT means
that the start time of w0 must not exceed the end time of w plus a fixed time lag �.

We formally define the problem through the presentation of its constraint programming
formulation. For modeling and solving, we use the CP Optimizer constraint-based schedul-
ing library (Laborie et. al. 2018). Below we refer to the basic modeling elements we use.
We refer to (Laborie et. al. 2018) for a more detailed definition of these elements. Each
task w 2 W is modeled as an interval decision variable T

w

. Each possible mode of a task
(number of operators o and resource profile p) is modeled as an interval optional deci-
sion variable T

wop

linked to the task by an alternative constraint. Precedence constraints
and maximal time lag constraints are modeled by endBeforeStart and startBeforeEnd
constraints, respectively. Task consumption on a resource is modeled as a pulse function.
We use also noOverlap constraints for constraints related to set NP . The model comes as
follows:

min
P

p2P

n

p

dvar interval T

w

in 0..CT, 8w 2 W

dvar interval optional T

wop

in 0..CT size �

opw

D

w

, 8w 2 W, p 2 P

w

, o 2 M

w

alternative(T
w

, (T
wop

)
p2Pw,o2Mw), 8w 2 W

endBeforeStart(T
w

, T

w

0), 8(w,w0) 2 PR

startBeforeEnd(T
w

0
, T

w

,��), 8(w,w0) 2 MTP
w2W |Aaw=1

P
p2Pw

P
o2Mw

pulse(T
wop

, o) C

a

, 8a 2 AP
w2W,o2Mw

pulse(T
wop

, o) n

p

, 8p 2 P

noOverlap(T
w

, T

w

0), 8{w,w0} 2 NP

3 A large neighborhood search approach

LNS is generally applied to scheduling problems where the objective is to minimize a
time-related criterion or an outsourcing cost. A typical large neighborhood of a solution in
this context consists in selecting a time interval and fixing all activities scheduled outside
the interval and compacting as much as possible the activities scheduled over the interval, as
it was done for the RCPSP in (Palpant et. al. 2004). Notably, the default search of the IBM
CP Optimizer we used in the previous section also implements an LNS method based on this
principle (Laborie et. al. 2018). This is not what we should do for the considered problem,
as compacting a schedule as much as possible would inevitably increase the resource usage.
In the problem considered here, we aim at minimizing the maximal use of a given resource.
We aim at identifying the set of tasks that are involved in the maximal resource peaks.
Consider a solution S where each task w 2 W has start time S̄

w

2 [0, CT], a number
of assigned operators ō

w

2 M

w

for operator profile p̄

w

2 P

w

and a maximal number of
operators n̄

p

for each operator profile p 2 P . The set of peak tasks is the set of all critical
sets as defined below:

Definition 1. A critical set W̃ is a set of overlapping tasks that reaches the maximal

number of operators for at least one profile p 2 P . More formally: 9t 2 [0, CT], 9p 2 P ,

8w 2 W̃ , p̄

w

= p, S̄

w

 t < S̄

w

+ �

ōw p̄ww

D

w

and

P
w2C ōw = n̄

p

.

3

In fact, the resource usage only changes at the beginning or the end of a task. Let T
denote the set of different start and end times of the tasks. The set of all critical sets can be
enumerated by a sweep algorithm that tests the condition of definition 1 for each set built
by the task that overlaps each time point in T . Algorithm 1 describes the sweep algorithm
that computes the set of all peak tasks C in O|W |2|P | time.

Algorithm 1 The sweep algorithm for peak task computation
Require: A problem P and a solution S = {(S̄

w

, p̄

w

, ō

w

)
w2W

, (n̄
p

)
p2P

}
C ;
T {S̄

w

|w 2W} [{S̄
w

+ �

ōw p̄ww

D

w

|w 2W}
for p 2 P do

for t 2 T do

W̃ ;; cons 0
for w 2W do

if p̄

w

= p and S̄

w

 t < S̄

w

+ �

ōw p̄ww

D

w

then

W̃ W̃ [{w}; cons cons+ ō

w

end if

end for

if cons = n̄

p

then

C C [W̃

end if

end for

end for

return C

In order to generate a high quality neighborhood, we let free all the tasks that contribute
to the maximal use of the objective resource (the ones belonging to the peak set computed
by the sweep algorithm) and the tasks that must precede them by a precedence constraint,
and we fix the others. We then solve this new problem given the bound provided by the
value of the initial solution and the constraints induced by the fixed tasks, within a limited
time. If a solution has been found, it replaces the initial solution as the best solution
and we start over. However, if no solution was found, we solve a new problem, fixing
fewer tasks and setting a greater solving time, using a self-adaptive principle (Palpant
et. al. 2004). To be more specific, each time the solver is unable to find a solution, we
fix 10% less activities and add 10 seconds to the maximum solving time. These values
were determined empirically using the instances from the benchmark considered in the
previous sections. In our implementation, we use CP Optimizer as a black box to solve
different generated subproblems using the constraint programming model described in
Section 2. Algorithm 2 provides the pseudo-code of our implementation of the LNS method
for the aircraft assembly line scheduling problem. Note that presenceOf(T

wop

) in the CP
Optimizer language is a constraint that enforces the presence of the optimal task T

wop

,
while startAt(T

w

, t) is a constraint that fixes the start time of task T

w

to value t. These
two constraints are used to fix the modes and the start times of the tasks in W \W 0 while
the tasks in W

0 are freed and form the LNS subproblem. Note that ⌧

0 is a value much
lower than ⌧ giving the amount of time devoted to the CP solver to get an initial solution.

4 Experimental results

We first compare LNS with CP optimizer and with a heuristic used by the aircraft
manufacturer (Borreguero et. al. 2021) on a set of 7 industrial instances having from 90 up

4

Algorithm 2 LNS for the aircraft assembly line scheduling problem
Require: An aircraft assembly line scheduling problem P in the form of a constraint programming

model (Section 2) and a time limit ⌧

Initialize solution S⇤ = {(S⇤
w

, p

⇤
w

, o

⇤
w

)
w2W

, (n⇤
p

)
p2P

} by solving P with CP Optimizer under
time limit ⌧

0

⇡

ratio

 100; ⌧
base

 10; ⌧
inc

 0
while elapsed time < ⌧ do

W̃ sweep(P,S
best

) (get the peak tasks)
W

⇤ W̃ [{W 0 2W |(w0
, w) 2 PR} (add the tasks that precede them)

W

0 a subset of W ⇤ where we randomly select ⇡

ratio

% tasks
P 0 P
for w 2W \W 0

do

P 0 P 0 [presenceOf(T
wo

⇤
wp

⇤
w
)

P 0 P 0 [startAt(T
w

, S

⇤
w

)
end for

P 0 P 0 [{
P

p2P

n

p

<

P
p2P

n

⇤
p

}
Get solution S = {(S̄

w

, p̄

w

, ō

w

)
w2W

, (n̄
p

)
p2P

} by solving P 0 with CP Optimizer under time
limit min(t

base

+ t

inc

, T � elapsedtime)
if

P
p2P

n̄

p

<

P
p2P

n

⇤
p

then

S⇤ S; ⌧
inc

 0; ⇡
ratio

 100
else if S is empty then

⌧

inc

 ⌧

inc

+ 10; ⇡
ratio

 ⇡

ratio

� 10
end if

end while

return S⇤

to 721 tasks. For a 15 min CPU time limit, LNS improves the CP optimizer solutions for 5
out of 7 instances from 5.2% to 17.6%. Compared to the heuristic used by the manufacturer,
the improvement on 4 out of 7 instances goes from 4.5% to 27.7% and for one instance
LNS finds a solution while the heuristic is unable to find one. We also compare LNS to the
CP optimizer model proposed in (Gerhards 2020) on the MMRIP. The results displayed
in Table 1 for different CPU times and numbers of tasks (from 30 to 100) show significant
improvements. Detailed results are given in (Borreguero et. al. 2021).

Table 1. LNS improvement over CP (Gerhards 2020) for the MMRIP

Instance set 1 min 15 min 30 min
MMRIP30 5.27% 11.15% 0.82%
MMRIP50 5.61% 15.47% 1.14%
MMRIP100 10.58% 17.46% 3.40%

References

Borreguero T., Portoleau T., Artigues C., García A., Ortega M., 2021, “Exact and heuristic
methods for an aeronautical assembly line time-constrained scheduling problem with mul-
tiple modes and a resource leveling objective”, LAAS report 21247, LAAS-CNRS, Toulouse,
https://hal.laas.fr/hal-03344445.

Gerhards P., 2020, “The multi-mode resource investment problem: a benchmark library and a
computational study of lower and upper bounds", OR Spectrum, Vol. 42, Num. 4, pp. 901-
933.

Palpant M., Artigues C., Michelon P., 2004, “LSSPER: Solving the resource-constrained project
scheduling problem with large neighbourhood search”, Annals of Operations Research, Vol.
131, Num. 1-4, pp. 237-257.

Laborie P., Rogerie J., Shaw P.,Vilím P., 2018, “IBM ILOG CP Optimizer for scheduling”, Con-
straints, Vol. 23, Num. 2, pp. 210-250.

1

Robust scheduling within SNCF railway maintenance
centers

Rahman TORBA1,2, Stéphane DAUZÈRE-PÉRÈS2, Claude YUGMA2, Cédric
GALLAIS1 and François RAMOND3

1 SNCF Direction du Matériel, 93210 Saint-Denis, France
rahman.torba, cedric.gallais@sncf.fr

2 Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, Centre CMP,
Departement SFL, F - 13541 Gardanne, France

yugma, dauzere-peres@emse.fr
3 SNCF Innovation & Recherche, 93210 Saint-Denis, France

francois.ramond@sncf.fr

Keywords: RCPSP, Multi-project, Multi-skill, Railway maintenance, MILP.

1 Introduction

The French national railway company, SNCF, is responsible for the maintenance of
its rolling stock. The most heavy maintenance operations, and thus longest ones (several
weeks), are carried out in ten different dedicated workshops. The aim is to renovate and
modernize railway vehicles every 10 to 20 years, depending on their type and deterioration
state. Not only train coaches are maintained, but most of the components as well (electronic
cards, bogies, axles). Economic savings and the reduction of the environmental impact of
the railway industry are the main challenges while increasing passenger comfort and service
quality. These decisions are made at a strategic level since the costs of rolling stock are
very high. The rolling stock lifecycle is doubled thanks to heavy maintenance (Le Quéré
et. al. 2003). At a tactical level, when and how much to produce should be decided to meet
the customer requirements.

Knowing rolling stock arrival dates in the maintenance workshop, we propose a MILP
model to schedule maintenance operations respecting industrial constraints. Each rolling
stock unit is considered as a project and operations as activities requiring a certain number
of resources to be processed. Thus, we deal with the multi-skill resource-constrained multi-
project scheduling problem (MSRCMPSP), as resources have multiple skills and several
rolling stock units are maintained simultaneously, which is an extension of the resource-
constrained project scheduling problem (RCPSP).

The RCPSP was first proposed by Pritsker et. al. (1969) who introduced a binary
variable xi,t equals to 1 if activity i start at time t, 0 otherwise. Since then, the problem
has been widely studied and various extensions were proposed. It is a proven NP-hard
problem and most papers focus on a single project; sometimes with multi-skill resources.
However, very few papers deal with both multiple projects and multi-skill shared resources
(Habibi et. al. 2018). The objective is usually to minimize the makespan, i.e. the total time
to perform all activities on available resources.

In this paper, we focus on minimizing the sum of weighted tardiness of the projects∑N
e=1 we ∗ Te, and the sum of their weighted duration

∑N
e=1 we ∗ (Ce − Se); where we

is the weight of the rolling stock unit e, Te its tardiness, Ce its completion time and Se

its starting time. The first objective is obvious, respecting client due date is a priority in
order to respect train timetable (Ramond et. al. 2006). The second objective reflects the
performance of the workshop and it is attractive for the client since the immobilization
of rolling stock units is minimized. Variable Se is introduced because it is easier to agree

2

with the customer on an arrival date than on a due date. By decreasing the lead times,
machines idle times are minimized and maintenance costs are reduced.

2 Problem description

When trains enter into the workshop some technical tests and observations are per-
formed to re-estimate the workload. Then, trains are uncoupled in several coaches. Com-
ponents of coaches are dismantled and repaired in parallel. To reassemble the train, the
activities of all coaches and components must be finished. Once coaches are coupled, the
final activity consists of testing the train in order to check that safety and quality stan-
dards are respected. Figure 1 illustrates the activity precedence graph of a very simplified
maintenance procedure of a rolling stock unit composed of only 2 coaches.

Fig. 1. Simplified activity precedence graph of rolling stock heavy maintenance

To give a few figures, a workshop processes around 6 to 10 trains simultaneously and
thousands activities over a horizon of 1 to 2 years. Therefore, this is a very large planning
problem.

So, we have a set of activities A to schedule, with processing time pa and precedence
relationship represented as a couple (a, a′) meaning that activity a must be executed before
a′, during a time horizon T . Each activity needs a set of capacitated ra,k resources of type
k ∈ K. Regarding resource types, machines and human operators must be differentiated.
A machine in our case is a location (place), equipped with rails and with several facilities
(for instance a garage pit and rolling stock roof access installation). Thus, by analogy with
operators, machines are considered as multi-skill resources.

Contrary to machines, operators have working hours that must be taken into account.
Due to long-horizon scheduling and uncertainty of the number of operators with a given
skill, we do not assign operators but only assure to not exceed a capacity threshold for each
team r ∈ R and skill k ∈ K at each period t ∈ T . The threshold should be configurable for
each team. In fact, depending on rolling stock types and their entering date, certain teams
or skills are not yet well sized. Furthermore, managers can create different scenarios with
different capacity configurations and take mid-term decisions.

However, since the workshop configuration is very unlikely to be modified, we assign to
each activity the location with the facility required to process this activity. Thus, this is
a multi-skill resource assignment problem. The goal it to find a resource feasible solution
that optimizes one or several criteria and respects maintenance procedure constraints such
as precedence constraints and transport times between activities, modelled usually as time
lags (Laurent et. al. 2017).

3

3 Mathematical modeling

Two main modeling approaches for the RCPSP can be found in the literature (Koné
et. al. 2011):

– Continuous time modeling, where activities can start at any time of the scheduling
horizon. The associated models are based on disjunctive constraints between activities
sharing the same resources (Azem et. al. 2007).

– Discrete time modeling, where activities can only start at a given period t ∈
1, 2...T −1, T . The number of variables, and the performances of the associated models
are very sensitive to the discretization step and the scheduling horizon T since the
number of decision variables increases.

As mentioned in Section 2, human resources have working hours. Furthermore, the
number of operators with a given skill is uncertain on a long horizon and because it is time
varying, we use a discrete time model for our problem. This modeling approach is widely
used for the RCPSP since time dependent constraints are easy to write, and discrete time
models have good linear relaxation bounds compared to continuous time models because
of the "big-M" required in disjunctive constraints (Azem et. al. 2007).

Our MILP model is adapted from the model of Bellenguez and Néron (2005) and
Pritsker et. al. (1969). The main binary decision variables are listed below:

– Xm,a,t ∈ {0, 1} which is equal to 1 if activity a ∈ A start at period t ∈ T at location
m ∈ M , and 0 otherwise.

– Ym,i,a ∈ {0, 1} which is equal to 1 if facility i ∈ Im of localisation m is used for
processing a, and 0 otherwise. This variable allows us to handle the multi-skill aspect
of the problem.

– Sa,t ∈ {0, 1} which is equal to 1 if activity a start at period t, and 0 otherwise. Let
us note that this is an auxiliary variable used to keep a similar structure as the model
proposed by Pritsker et. al. (1969). To be more explicit, Sa,t =

∑
m∈M Xm,a,t.

No preemption is allowed, each resource is assigned at most to one activity in a given
period t and there are precedence constraints with lag time la,a′ between activities. For
the sake of brevity, we do not present the full model but we introduce and study the
performances of two different ways of writing precedence constraints:

T∑

t=1

tSa,t + pa + la,a′ ≤
T∑

t=1

tSa′,t; ∀(a, a′) ∈ Pa (1)

and,
t+pa−1∑

l=1

lSa,l + pa + la,a′ ≤
T∑

l=t

lSa′,l; ∀t ∈ T, ∀(a, a′) ∈ Pa (2)

The first one is the "classical" way, and the second one is an original disaggregated
approach, firstly considered by Christofides et. al. (1987) to reinforce the first one.

4 Preliminary numerical results

In our computational experiments, we analyze, on small instances designed using indus-
trial data, the performances of the two modelling approaches. The results in Table 1 show
that the discretization step "Step(h)" has a considerable impact on computational times
for both modelling methods. The "classical" method is way faster than the disaggregated
approach. However, for "difficult" instances, adding disaggregated constraints improves the
computational times.

4

Table 1. Preliminary results on small instances based on industrial data (CPU<30min)

Duration Tardiness
Instance Step(h) CPU1(s) CPU2(s) CPU12(s) CPU1(s) CPU2(s) CPU12(s)

E2Act45
6 9 18 13 9 37 14
4 11 324 16 9 134 22
2 104 935 97 45 1357 33

E3Act73
6 576 1306 448 1410 1751 779
4 960 1538 853 1251 - 936
2 1344 - 1337 1695 - 1392

E4Act90
6 1042 1788 928 1789 - 1639
4 - - 1709 - - -
2 - - - - - -

5 Conclusions and perspectives

We proposed a Mixed Integer Linear Program to model the scheduling problem of
heavy maintenance operations on rolling stock, which is a multi-skill resource-constrained
multi-project scheduling problem (MSRCMPSP). The model was tested and validated using
real industrial data. However, heavy maintenance operations are very uncertain (processing
time, additional workload, etc.), and our main perspective is to study the stochastic version
of the problem, using for instance the notion of service level proposed in Dauzère-Pérès et.
al. (2008). A second perspective is to explore heuristics to solve large industrial instances
and have the proposed schedules validated by the maintenance planners.

References

Azem, S., Aggoune, R., & Dauzere-Peres, S., 2007, “Disjunctive and time-indexed formulations
for non-preemptive job shop scheduling with resource availability constraints", IEEE Interna-
tional Conference on Industrial Engineering and Engineering Management, pp. 787-791.

Bellenguez, O., Néron, E., 2005, “Lower bounds for the multi-skill project scheduling problem
with hierarchical levels of skills", International Conference on the Practice and Theory of
Automated Timetabling, pp. 229-243.

Christofides, N., Alvarez-Valdés, R. & Tamarit J., 1987, “Project scheduling with resource con-
straints: A branch and bound approach", European Journal of Operational Research, Vol. 29,
pp. 262-273.

Dauzère-Pérès, S., Castagliola, P., & Lahlou, C., 2008, “Service Level in Scheduling, In Flexibility
and Robustness in Scheduling" John Wiley & Sons, Ltd, pp. 99-121.

Habibi, F., Barzinpour, F., & Sadjadi, S., 2018, “Resource-constrained project scheduling problem
: Review of past and recent developments", Journal of Project Management, Vol. 3, pp. 55-88.

Koné, O., Artigues, C., Lopez, P., & Mongeau, M., 2011, “Event-based MILP models for resource-
constrained project scheduling problems", Computers and Operations Research, Vol. 38, pp.
313.

Laurent, A., Deroussi, L., Grangeon, N., & Norre, S., 2017, “A new extension of the RCPSP
in a multi-site context : Mathematical model and metaheuristics", Computers & Industrial
Engineering, Vol. 112, pp. 634-644.

Le Quéré, Y., Sevaux, M., Tahon, C., & Trentesaux, D., 2003, “Reactive scheduling of complex
system maintenance in a cooperative environment with communication times", IEEE Trans-
actions on Systems, Man, and Cybernetics, Vol. 33, pp. 225-234.

Pritsker, A. A. B., Waiters, L. J., & Wolfe, P. M., 1969, “Multiproject scheduling with limited
resources : A zero-one programming approach", Management Science, Vol. 16, pp. 93-108.

Ramond, F., Dauzére-Pérès, S., & de Almeida, D., 2006, “Scheduling moves within railcar main-
tenance centers", IFAC Proceedings Volumes, Vol. 39, pp. 405-410.

Insights and results for the offline and online weighted

capacitated parallel machine scheduling problem

Ilan Reuven Cohen

∗
Izack Cohen

†
Iyar Zaks

‡

We focus on capacitated parallel machine scheduling problems for modeling modern cloud
computing environments as well as batch manufacturing processes and wafer fabrication processes
[1]. The characteristic that separates between capacitaed machine scheduling problems and
their widely researched non-capacitated counterparts is that a capacitated machine can process
concurrently several jobs, up to its capacity.

Cloud computing systems such as those of Amazon Web Services (AWS), Microsoft Azure
and Google Cloud Platform (GCP) include multiple components that impact their performance;
one of those components is the scheduling module that allocates jobs to machines. Typically,
decision-makers who seek to elevate the utilization of their data centers concentrate on improving
their scheduling algorithms. Our focus in this research is on developing an efficient scheduling
algorithm for the capacitated identical parallel machine scheduling problem.

Surprisingly, the classic version of the identical parallel machine scheduling problem describes
well many real-world cloud computing environments. In fact, we were inspired into this research
from a cloud computing environment of a large organization in which one of the authors worked.
This environment can be modelled via the weighted capacitated identical parallel machines model.
In the considered system, the weights manifest the possibility of jobs with different importance
(for example, due to their reference to different customers or projects).

We seek to develop an algorithm with provable performance guarantees and, at the same time,
one that exhibits good average performance. Such a desired algorithm A for a minimization
problem P would have a ⇢ approximation ratio such that for any instance I of P , A(I) 
⇢ ·OPT (I), where OPT (I) is the value of an optimal solution for I.

∗
The Industrial & Information Systems Engineering (IISE) track in the Faculty of Engineering, Bar-Ilan

University, Israel. ilan-reuven.cohen@biu.ac.il

†
The Industrial & Information Systems Engineering (IISE) track in the Faculty of Engineering, Bar-Ilan

University, Israel. izack.cohen@biu.ac.il

‡
Faculty of Industrial Engineering and Management, The Technion, Israel. iyarzaks@gmail.com

Many studies developed approximation algorithms for the non capacitated version of the
problem; for example, Eastman, Even, and Isaacs in [2] proved that scheduling according to the
Weighted Shortest Processing Time (WSPT) priority rule provides a constant approximation
algorithm. Kawaguchi and Kyan [3] improved the WSPT approximation ratio (⇢) to (1 +

p
2)/2

and proved that it is tight.

For the capacitated setting the research is scarce; Im, Naghshnejad, and Singhal [4] were the
first to develop a constant approximation algorithm for minimizing the non-weighted sum of
completion times. They combined the Smallest Volume First (SVF) priority rule and the Shortest
Processing Time (SPT) priority rule. Our work extends theirs into the more general, weighted
case, by combining the Weighted Smallest Volume First (WSVF) and WSPT rules, aiming to
develop the first algorithm with a constant approximation ratio for the weighted completion
time problem in the capacitated setting. Moreover, our analysis improves their approximation
ratio for the non-weighted case and the suggested algorithm demonstrates favorable performance
compared to several other alternatives.

Since the concerned problem is NP-hard, we study heuristic approaches and develop provable
approximation guarantees for their offline version. We focus on an algorithm that prioritizes
the jobs with the smallest volume-by-weight ratio. We bound its approximation ratio using a
decreasing function of the ratio between the highest resource demand of any job and the server’s
capacity. We use this algorithm for scheduling jobs with resource demands equal to or smaller
than 0.5 of the server’s capacity in conjunction with the classic weighted shortest processing time
algorithm for jobs with resource demands higher than 0.5. By doing this, we create a hybrid,
constant approximation algorithm for two or more machines.

We also develop a mixed integer linear program that can solve small problem instances to
optimality and demonstrate that the suggested algorithm finds near-optimal solutions. Then, we
conduct a comprehensive numerical experiment with synthetic and real-life problem instances
with up to 30,000 jobs and 80 machines. We benchmark our WSVF algorithm with other
alternatives such as the SPT, WSPT and SVF. The results indicate that the WSVF performs
favorably with respect to the other alternatives.

Next, we develop an online WSVF-based algorithm that handles settings in which new jobs
are continuously and randomly arriving to the system. The objective function is to minimize
the total weighted flow time. As in the offline version of the problem, the algorithm uses the
WSVF priority rule but in a way that is adapted to the online setting. Each time a job completes
its processing or at preset intervals, the queue is reordered while taking into account the new
jobs that arrived. We checked three different allocation policies for the online algorithm that fit
different situations.

The first version, which we call Batch dispatch, sorts the batch of jobs that arrived to the
scheduling system during the last time interval by WSVF and schedules them on the machines;
that is, for each job the processing start time is set - even if the start time is sometime in the
future. Via this policy, the customer immediately knows the machine and the start time at which
its job will run, and accordingly when it is expected to complete its processing. Moreover, this

2

policy guarantees that no job will be unfairly stuck in the line.

The second policy emulates the parallel scheduling scheme without back-filling. That is, a
job is allocated to a machine only if it can start its processing immediately. Under this policy,
the queue of jobs is updated whenever a new job arrives. In such a case the customer does not
receive information about when its job will be processed and there is also a possibility that a job
will not be processed for a long time if jobs with a higher priority arrive to the system frequently.

The third policy, which is denoted as online continuous dispatch with back-filling, is similar to
the second policy but with the option for jobs to be scheduled before higher priority jobs that
cannot be scheduled immediately due to lack of machine capacity.

Our numerical experiments indicate that the second version of the algorithm outperforms
the first one by almost 50% and the third outperforms the second policy by about 10%. That
is, by the first policy the customers receive full information about the processing machine and
completion time of their job but the price of providing this information is a significantly higher
average completion time.

We list below the contributions of our research:

1. We investigate the offline and online versions of the capacitated parallel machine scheduling
problems and provide theoretical and numerical results.

2. We provide a polynomial-time algorithm with a
⇣
1 + 1

1�↵

⌘
-approximation ratio, if the ratio

between the jobs’ demands and the servers’ capacities is at most ↵. Our algorithm also
improves the best known approximation guarantees for the non-weighted version—see, [4].

3. Moreover, we provide a polynomial-time constant 4 + o(1/M)-approximation ratio for job
scheduling on two or more machines.

4. We formulated a mathematical program for solving small problem instances to optimality
so we can benchmark them with the WSVF algorithm.

5. Via extensive numerical experiments with realistic size problem instances, we demonstrate
the favorable performance of the offline and online versions of the suggested algorithms
compared to other alternatives.

Finally, we mention three possible extensions to our work. The first significant theoretical
extension may consider capacitated problems with multiple capacitated resources. In real-world
cloud computing environments, CPU, memory, storage and bandwidth may be scarce resources.
To realize such an extension, one would need to consider a multidimensional demand for each job.
A second extension would be to use our methods to find performance guarantees in stochastic
environments in which, for example, processing duration can be characterized using probabilistic
knowledge. The third research direction would be to develop a model that accommodates jobs
with release dates and deadlines. Such research may also be considered to be a natural extension
of the current model.

3

References

[1] Purushothaman Damodaran, Omar Ghrayeb, and Mallika Chowdary Guttikonda. “GRASP
to minimize makespan for a capacitated batch-processing machine”. In: The International
Journal of Advanced Manufacturing Technology 68.1-4 (2013), pp. 407–414.

[2] Willard L Eastman, Shimon Even, and I Martin Isaacs. “Bounds for the optimal scheduling
of n jobs on m processors”. In: Management science 11.2 (1964), pp. 268–279.

[3] Tsuyoshi Kawaguchi and Seiki Kyan. “Worst case bound of an LRF schedule for the mean
weighted flow-time problem”. In: SIAM Journal on Computing 15.4 (1986), pp. 1119–1129.

[4] Sungjin Im, Mina Naghshnejad, and Mukesh Singhal. “Scheduling jobs with non-uniform
demands on multiple servers without interruption”. In: IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications. IEEE. 2016, pp. 1–9.

4

1

Disjunctive graph model for flexible job-shop scheduling

problem with transportation and limited buffer space

Lucas Berterottière1, Claude Yugma1 and Stéphane Dauzère-Pérès1

Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, Centre CMP,
Manufacturing Sciences and Logistics Department, F - 13541 Gardanne, France

{berterottiere,yugma,dauzere-peres}@emse.fr

Keywords: Job-shop scheduling, Disjunctive Graph, Transportation, Buffers

1 Introduction

The production of microelectronic devices is a highly complicated and cost-intensive
process. In a semiconductor manufacturing facility (fab), a huge number of processing steps
(until 800) in different work areas are required for the production of a single job (lots of
wafers). In this context working on scheduling decisions is a challenging task. Furthermore,
scheduling decisions have a strong impact on key performance indicators such as throughput
and cycle time (Mönch et al. (2011)).

In this paper, we are concerned with solving an extension of flexible job-shop scheduling
problems stemming from semiconductor manufacturing. The Flexible Job Shop Problem
(FJSP) is an extension of the classical job shop scheduling problem which allows an op-
eration to be processed by any machine from a given set. The problem is to assign each
operation to a machine and to order the operations of the machines, such that the maximal
completion time (Makespan) of all operations is minimized.
We extend this problem by integrating machine-to-machine transport jobs. The capacity
of each vehicle is unitary i.e. each vehicle can move only one job at a time. Every job
starts from an initial common deposit. Our goal is to solve the flexible job-shop scheduling
problem while considering transportation and storage management of jobs to minimize
Makespan. We formulate this problem through disjunctive graph modeling.

2 Related works

The problem under consideration is a generalization of the flexible job-shop scheduling
problem which is already known to be NP-hard (Garey, M., Johnson, D. 1979). The liter-
ature is full of work on flexible job shop scheduling problems as Dauzère-Pérès, S., Paulli,
J. (1997) and Kacem, I. et. al. (2002).

This problem adds to the flexible job-shop scheduling the transportation management
and the limited capacity of the buffers. Three aspects have to be underlined for the problem,
the flexibility of machine assignment, the transportation management, and the limited ca-
pacity of the buffers. Seen separately, these problems have been studied in the literature. We
can find papers that introduce routing in job-shop scheduling decisions. Ulusoy, G., Bilge,
U. (1993) and Bilge, U. and Ulusoy, G. (1995) proposed such a problem and decompose
the master problem into two subproblems: production operations scheduling and transport
operations scheduling. Hurink, J., Knust, S. (2005) introduced a disjunctive graph for the
job shop with one single robot, then Lacomme, P., Larabi, M. (2007) extended to a job
shop scheduling with multiple automated guided vehicles (AGV). More recently Zeng, C.,
Tang, J., Yan, C. (2014) proposed a neighborhood structure for the disjunctive graph model
to solve the blocking job-shop with AGV (BJS-AGV). The closest article to our topic is

2

Zhang, Q., Manier, H., Manier, M-A. (2013) which uses a disjunctive graph modeling but
differs on the method used as they adapt a Shifting Bottleneck heuristic.

To our knowledge, integrating these aspects (transportation, flexible scheduling and
storage management) into the problem has rarely been addressed in the literature. Inte-
grating transport in a job-shop is even more relevant if it is flexible, because in a classical
job-shop, the transport requests are known while in a flexible job-shop, the choice of the
machine has an impact on the travel time of the job. Dealing with these aspects together is
also motivated by modern semiconductor manufacturing factories. Actually, we now find in
fabs optimized algorithms (schedulers) used for production, one move from reactive to pre-
dictive transport management where transportation and storage decisions can be planned.
Moreover, in these modern fabs, the cost of automated vehicle management for transporta-
tion is very low and can be neglected. Thus, given these considerations, it is relevant to
integrate production, transport and storage decisions for better production planning.

3 Problem description

As already written, the problem we are studying here is an extension of the FJSP with
transport, where an input and output loading port for each machine and limited capacity
buffers for job storage are considered. An instance of the problem is composed of a set
of job, which are a sequence of multiple consecutive operations, a set of machines with a
defined number of input and output buffer space and a set of vehicles with unit capacity.
As we are studying a flexible job-shop, each operation has a set of machines on which it
can be processed. The processing times of production operations are machine dependents
while the travel times of the vehicle doesn’t depend on the vehicle affected.

The objective is to determine an assignment of jobs to machines, a sequence of pro-
duction operations on the machines, and using buffers when necessary, the transportation
sequences for vehicles for minimizing the Makespan C

max

.

4 Disjunctive graph modeling

The disjunctive graph is given by G = (V,E
c

, E

d

), where V denotes the set of nodes
of G, E

c

the set of conjunctive arcs and E

d

the set of disjunctive arcs. A node v 2 V

represents an operation of a job. The initial conjunctive arcs, defined as directed arcs, rep-
resent precedence constraints between operations in a job. The disjunctive arcs, defined as
undirected arcs, represent the need to schedule on one machine one node at one end before
the other. Once this graph has been constructed, a possible schedule can be determined
by finding, for each machine, a chain of oriented arcs from the disjunctive arcs. The con-
junctive graph is a solution to the scheduling problem if there is no cycle. Each precedence
constraint is represented.

We add transport operations between the production operations. Those operations are
all linked together by as many arcs as there are vehicles. Once all the arcs are oriented
such as there is a planning, the transport arcs are weighted by the travel time between two
machines. To represent the blocking constraints, we use the technique of McCormick, S.et.
al. (1989). A disjunctive arc between two operations, one blocking the other, is replaced
by two oriented arcs from each node to the predecessor of the other. The resulting solution
is left with only one of the two arcs. This technique is used for vehicles, which can only
process one operation at a time and will be used for the evaluation of a solution when
adding buffers.

It is only possible to add buffers when a solution is found. The resulting conjunctive
graph is extended by adding a node before and after every node representing a production

3

operation. They represent the input and the output buffers. Every job follows the rule first
in, first out (FIFO).

5 Solution approach and results

In this section, we summarize by a pseudo-code the steps of the Tabu search we followed
to obtain a solution:

Step 1. Find an initial solution using a topological sort of the vertices.
Step 2. While Maxiter iterations without improvement on the Makespan, repeat:
– Search the neighborhood to find the best non-tabu move.
– Perform the best non-tabu move.
– Update the makespan and the heads and tails of each nodes.
– Update the Tabu list.

Step 3. Return the best solution.

We use a randomly generated initial solution by taking every production operation in
a topological order then affect it to the least loaded machine on which this operation can
be processed. Then we sort the transport operation according to their release date and
similarly affect them to the least loaded vehicle.
We use a Tabu search method inspired by Dauzère-Pérès, S., Paulli, J. (1997) improved in
?. To use a local search method, we need to define a neighborhood from a solution. The
challenging part is that the neighbor must not contain a cycle. We adapt the neighborhood
structure to guarantee that no cycle is created.
One of the main differences between our method and the previous method is that we
are working on two connected graphs. The first is the graph with the production and
transport operations and the second is the same with the buffers. This change occurs at
the time of the update of the Makespan and of the heads and tails. We will present results
comparing the evaluation of heads and tails on the first conjunctive and the extended one.
The modification and evaluation of the extended connective graph is time-consuming, but
it allows to accurately evaluate the heads and tails with the blocking constraints on the
buffers.

Instance C⇤
max

(MILP) LAHC Tabu search
fjspt1 134 138 134
fjspt2 114 114 114
fjspt3 120 120 120
fjspt4 114 114 116

Table 1. Comparison with Late Acceptance Hill-Climbing of Homayouni, S. M., Fontes, D., B.,
M., M. (2021) on 4 instances of Deroussi, L., Norre S. (2010)

The results on the table 1 shows that our results are matching those of Homayouni, S.
M., Fontes, D., B., M., M. (2021) on the instances of Deroussi, L., Norre S. (2010) that are
modified versions of instances of small-sized instances proposed by Bilge, U. and Ulusoy,
G. (1995).

4

6 Conclusion

In this paper, we have addressed a complex problem is motivated by the semiconduc-
tor manufacturing industry. We have considered a Flexible Job-Shop scheduling problem
with transportation and limited capacity buffer to be solved in an integrated approach.
A disjunctive graph representation is used for modeling this complex problem. We have
obtained promising results on a benchmark instances of Deroussi, L., Norre S. (2010) for
FJSP with transport but without storage constraints.
Other properties obtained and result analysis will be reported at the conference.

References

Bilge, U. and Ulusoy, G., 1995, ‘Time window approach to simultaneous scheduling of machines
and material handling system in an FMS", Operations Research, Vol. 43, pp. 1058-1070.

Dauzère-Pérès, S., Paulli, J., 1997, “An integrated approach for modeling and solving the gen-
eral multiprocessor job-shop scheduling problem using tabu search", Annals of Operations
Research, Vol. 70, pp. 281-306.

Deroussi, L., Norre S., 2010, “Simultaneous scheduling of machines and vehicles for the flexible job
shop problem", International Conference on Metaheuristics and Nature Inspired Computing,
pp. 1-2.

Garey, M., Johnson, D., 1979, “Computers, Complexity, and Intractability".
Homayouni, S. M., Fontes, D., B., M., M., 2021, “Production and transport scheduling in flexible

job shop manufacturing systems", Journal of Global Optimization, Vol. 79, pp. 463–502.
Hurink, J., Knust, S., 2005, “Tabu search algorithms for job-shop problems with a single transport

robot", European Journal of Operational Research, Vol. 162, pp. 99-111.
Kacem, I., Hammadi, S., Borne, P., 2002, “Approach by localization and multiobjective evolution-

ary optimization for flexible job-shop scheduling problems", IEEE Transactions on Systems,
Man and Cybernetics Part C: Applications and Reviews, Vol. 32, pp. 1-13.

Lacomme, P., Larabi, M., 2007, “A Disjunctive Graph for the Job-Shop with Several Robots",
MISTA Conference, Paris, pp. 285-292.

McCormick, S., Pinedo, M., Shenker, S. et. al., 1989, “Sequencing in an assembly line with blocking
to minimize cycle time", Operations Research, Vol. 37, pp. 925-935.

Mönch, L., Fwoler, J.W., Dauzère-Pérès, S., Mason, S.J., Rose, O., “A survey of problems, solution
techniques, and future challenges in scheduling semiconductor manufacturing operations",
Journal of Scheduling, Vol. 14, pp. 583–599.

Ulusoy, G., Bilge, U., 1993, “Simultaneous scheduling of machines and automated guided vehicless",
International Journal of Production Research, Vol. 31, pp. 2857-2873.

Zeng, C., Tang, J., Yan, C., 2014, “Scheduling of no buffer job shop cells with blocking constraints
and automated guided vehicles", Applied Soft Computing Journal, Vol. 24, pp. 1033-1046.

Zhang, Q., Manier, H., Manier, M-A., 2014, “A modified shifting bottleneck heuristic and disjunc-
tive graph for job shop scheduling problems with transportation constraints", International
Journal of Production Research, Vol. 52:4, pp. 985-1002.

1

Application of Quantum Approximate Optimization
Algorithm to Job Shop Scheduling Problem

Tomasz Pecyna1, Krzysztof Kurowski1, Rafał Różycki2, Grzegorz Waligóra2
and Jan Węglarz2

1 Poznań Supercomputing and Networking Center, IBCH PAS, Poland
tpecyna, krzysztof.kurowski@man.poznan.pl

2 Poznań University of Technology, Institute of Computing Science, Poland
rafal.rozycki, gwaligora, jan.weglarz@cs.put.poznan.pl

Keywords: Job Shop Scheduling Problem, Quantum Approximate Optimization Algo-
rithm, Scheduling, Quantum Computing, Heuristic, Approximation.

1 Introduction

The Job Shop Scheduling Problem (JSSP) has always been considered as one of the
most complex scheduling problems. Optimizing the makespan of a given schedule generally
involves using dedicated algorithms, local search strategies, or metaheuristics. These ap-
proaches, however, rely on classical computational power, which is bounded by the physical
limits of microcontrollers and power issues. Inspired by the promising results achieved for
Quantum Annealing (QA) approaches to solve JSSP (Venturelli et al. 2016), we propose an
approach that uses gate-model quantum architecture with the Quantum Approximate Op-
timization Algorithm (QAOA) (Farhi et al. 2014) as an alternative to QA. Our approach,
in contrast to Amaro et al. (2022), shows that we can take advantage of educated guess
strategy to increase the chances of finding the optimal solution to a basic JSSP instance.

2 Formulation

In this paper we use the following formulation of the JSSP. There are J jobs J =
{j1, . . . , jJ} and each of them has Oj operations Oj = {oj1 ! · · · ! ojOj} to be processed
in predefined order. Each operation must be processed on a specified and distinct machine
from a set of M machines, M = {m1, . . . ,mM}, and only one operation can be processed
by a machine at a given time. The objective is to find the minimum makespan.

Inspired by Venturelli et al. (2016) we use the time-indexed JSSP representation. We
define xk,t = 1 if operation ok starts at time t and xk,t = 0 otherwise, where t is bounded
by a deadline T common for all jobs, and k is a running index representing a position of
an operation in a list concatenating operations over all jobs:

[o11, . . . , o1O1| {z }
j1

, o21, . . . o2O2| {z }
j2

. . . , oJ1, . . . oJOJ| {z }
jJ

] = [o1, . . . , ok1| {z }
j1

, ok1+1, . . . ok2| {z }
j2

. . . , okJ�1+1, . . . okJ| {z }
jJ

].

(1)

We can now define a set of feasibility constraints. Firstly, the operation must start once
and only once, which is expressed by the following formula:

h1(x) =
X

k

X

t

xk,t � 1

!2

= 0. (2)

Secondly, there can be only one operation running at a given machine at any time, i.e.:

2

h2(x) =
X

m

0

@
X

k,t,k0,t02Am[Bm

xk,txk0,t0

1

A = 0, (3)

where Am constrains an operation ok0 from starting on a machine m if ok is still running
on the machine, and Bm constrains two operations from starting at the same time.

Let us denote lk as the processing time of operation k. The last feasibility constraint is
defined so that the original order of the operations is kept for all the operations:

h3(x) =
JX

n=1

0

BB@
X

kn�1<k<kn

t+lk>t0

xk,txk+1,t0

1

CCA = 0. (4)

To promote low-makespan schedules we take advantage of the time-indexed represen-
tation by deriving an additional term that will put a penalty on any non-optimal schedule:

h4(x) =
JX

n=1

(J + 1)tkn , (5)

With JSSP formulated, let us shortly remind the basics of QAOA to use it as the opti-
mization algorithm. Having R qubits, the QAOA alternately applies the cost Hamiltonian
HC and a mixing Hamiltonian HB to the |+i⌦R state p times, achieving a final state :

| p(
�!� ,�!�)i = e�i�pHBe�i�pHC . . . e�i�1HBe�i�1HC |+i⌦R, (6)

where the variables � and � play the role of variational parameters to be optimized
by a classical algorithm. The parameter p is a key parameter of QAOA which defines
circuit depth and influences solution quality. The cost Hamiltonian is the objective function
constructed of a sum of binary clauses, in our case it is a sum of eqs. (2) to (5) taking Pauli-
Z matrices as arguments, i.e. HC(�z) = h1(�z) + h2(�z) + h3(�z) + h4(�z). The mixing
Hamiltonian HB usually takes the form of a sum of Pauli-X matrices HB =

PR
r=1 �

x
r .

The goal of QAOA is to find such parameters �⇤ and �⇤ so that the expected value,
which we will call energy in the next section, is minimized:

Fp(
�!� ,�!�) = h p(

�!� ,�!�)|HC | p(
�!� ,�!�)i (7)

3 Experiments and results

Due to computational power limitations the following analysis was conducted on a toy
JSSP instance. The toy instance consists of 3 jobs and each of them contains between 1
and 2 operations with processing times ranging from 1 to 2 units. The number of machines
is 3. The makespan for the optimal schedule for this instance is ⌧ = 3.

3.1 Educated guess strategy

The succeeding optimal variational QAOA parameter sequences �⇤ = �⇤
1 , . . . ,�

⇤
i , . . . ,�

⇤
p

and �⇤ = �⇤1 , . . . , �
⇤
i , . . . , �

⇤
p have been found to form patterns, i.e. their values should in-

crease monotonically with increasing i and also, that they should interpolate the space with
increasing p allowing to use the so-called educated guess strategy (Zhou et al. 2020). We
have experimentally found that the patterns also exists when using our JSSP formulation.
In Fig. 1 we present a visualisation of the behaviour of the variational parameters together

3

Fig. 1: Results for the basic JSSP instance obtained by using the educated guess strat-
egy. The subplots show 3 pairs of optimal parameters �i and �i (i : 1 . . . p) as well as
corresponding energy probabilities of the cost Hamiltonian.

with energy probabilities of the cost Hamiltonian. We can clearly see that, indeed, both �
and � tend to monotonically increase their values in the domain of increasing i in a single
circuit, and that they tend to interpolate the space in the domain of increasing circuit
depth p. We can also see that, the circuit depth affects the energy probabilities reaching
over 40% chance of measuring low energy solutions when the depth is p = 6.

3.2 Performance analysis

We present the relation between energy and makespan for p = 5 in Fig. 2a. We can see a
clear pattern that the lower the energy is, the higher is the probability of obtaining a feasible
solution with a low makespan. Moreover, only the lowest range of energies correspond with
the optimal solution. Interestingly, restricting the maximum feasible time to T = 4 resulted
in rise in probability of measuring solutions with low energy, therefore lower makespan. This
property might be advantageous when using any strategy based on repeated querying the
circuit, e.g., starting with large T , measuring any feasible solution with makespan lower
than T , and then setting this makespan value as T for the next iteration. Consequently,
this would, again, accelerate the process of finding the optimal solution.

Additionally, in Fig. 2b we show the optimization time. We can observe that the time
needed to optimize the variational parameters is higher when T = 5, than T = 4 and raises
quickly. It is because the number of variables needed to solve the problem growths with T .
In our case, the toy instance with T = 4 needs (after the pruning described in eg., Kurowski
et al. (2020)) 11 variables, while setting T = 5 raises the needed number of variables to 16.
Note, that in this paper all the experiments were made using a quantum simulator which
means that all of the possible states had to be processed sequentially. This should not
be discouraging, however, because there already exist several real quantum machines with
multiple qubits capable of performing computations on all binary states simultaneously. In
case of QAOA’s time complexity, it is no longer dependent on the instance size but instead
it is a function of the parameter p. Even though these are not directly comparable, it is
shown in Farhi & Harrow (2019) that it is enough to obtain quantum advantage.

4

(a) (b)

Fig. 2: (a) Left hand-side: relationship between makespan and energy. Size of the markers
are proportional to the probability of measuring a solution with given makespan and energy
range. Right hand-side: marginal distribution of energy over the makespan. The top row
presents the results for time T = 5, while the bottom row: T = 4. (b) Time needed for
optimization of the variational parameters in the function of length of simulated quantum
gate-model circuit. The plot compares two different maximum feasible times T .

4 Conclusions

This paper demonstrates how to efficiently apply QAOA to the JSSP to find the optimal
solution and pave the way for solving more complex scheduling problems. We investigated
the behaviour of the algorithm in series of experiments and demonstrated the relation
between energy and makespan. We also discussed our experiences gained from real com-
putational experiments. All the presented results can be quickly adopted and extended by
gate-model application developers, especially for initial testing and experimental verifica-
tion of new quantum-based approaches for CPU intensive quantum simulations.

Bibliography

Amaro, D., Rosenkranz, M., Fitzpatrick, N., Hirano, K. & Fiorentini, M. (2022), ‘A case
study of variational quantum algorithms for a job shop scheduling problem’, EPJ Quan-

tum Technology 9(1).
Farhi, E., Goldstone, J. & Gutmann, S. (2014), ‘A quantum approximate optimization

algorithm’, arXiv:1411.4028: Quantum Physics .
Farhi, E. & Harrow, A. W. (2019), ‘Quantum supremacy through the quantum approximate

optimization algorithm’, arXiv:1602.07674: Quantum Physics .
Kurowski, K., Węglarz, J., Subocz, M., Różycki, R. & Waligóra, G. (2020), Hybrid quantum

annealing heuristic method for solving job shop scheduling problem, in ‘Computational
Science – ICCS 2020’, Springer International Publishing, Cham, pp. 502–515.

Venturelli, D., Marchand, D. J. J. & Rojo, G. (2016), ‘Quantum annealing implementation
of job-shop scheduling’, arXiv:1506.08479: Quantum Physics .

Zhou, L., Wang, S.-T., Choi, S., Pichler, H. & Lukin, M. D. (2020), ‘Quantum approximate
optimization algorithm: Performance, mechanism, and implementation on near-term de-
vices’, Physical Review X 10(2), 021067.

1

Assembly Line Performance Analysis Based on Aircraft

Preliminary Design: a Scheduling Approach

Anouck Chan1, Stéphanie Roussel1 and Thomas Polacsek1

ONERA/DTIS, Université de Toulouse, F-31055 Toulouse, France
{anouck.chan,stephanie.roussel,thomas.polacsek}@onera.fr

Keywords: aircraft design, assembly line, RCPSP.

1 Introduction

Conceiving and building a complex product, such as an aircraft, is not only about its
specifications but also about how it is built. Because of its complexity, each aircraft has
a dedicated industrial system. Thus, when a new aircraft is conceived, so is its associated
industrial system. Both designs are interdependent, and design choice of one may impact
the design, the performance and the construction of the other.

In the aeronautical domain, the current development cycle is mainly sequential: the
aircraft is conceived first, then its means of production is. As described in Polacsek et al.
(2017), such an approach raises several issues, and, following the industry 4.0 trend, many
recent works follow a simultaneous engineering approach in which both systems (the aircraft
and its industrial system) are designed simultaneously. Among others, one challenge raised
by such an approach is to allow aircraft designers to estimate the consequences of their
choices at different stages of the process with respect to the industrial system.

Recent works address this problem. In Sanchidrián (2019), the author lists several
publications that focus on conceiving aircraft manufacturing systems at different stages
of the development process. Among those references, in Pralet et al. (2018), the authors
evaluate aircraft designs with respect to an existing assembly line.

In this work, we follow the latter approach in order to allow aircraft designers to compare
aircraft designs with respect to their assembly line performances. However, we are interested
in earlier steps of the development process. We propose a Constraint Programming model
of the industrial system at early stages of the process, along with its performance features,
and a model of the aircraft designs in terms of high level assembly tasks (Section 2). Then,
we show the results associated with two real industrial aircraft designs (Section 3). Finally,
in Section 4, we briefly conclude and describe future works.

2 Problem model

2.1 Assembly line presentation

We first describe the main features of an assembly line. We focus on pulsed lines, which
are composed of several workstations. The aircraft moves from a station to the next at
a regular time interval called takt-time. Therefore, the total time spent by the aircraft
in the assembly line, or makespan, is equal to takt-time multiplied by the total number
of stations. An assembly line is efficient if it has a short takt-time and a small number
of stations (i.e. a short makespan). A set of actions (or activities) are performed on each
station by technicians. These activities are located in specific areas of the aircraft (or zones)
in which only a maximum number of people can work simultaneously.

2

In early design stages, the assembly line does not yet exist. More precisely, the number
of stations, the takt-time and the makespan are not known. In this work, we focus on the
best takt-time and makespan (the smallest ones) that can be reached for a given design.

We also have a limited knowledge about tools and machines that will be available on
the assembly line. Indeed, we are only aware of the existence of dimensioning resources,
i.e. resources in limited supply because of their size, their high price or their uniqueness.
We also consider possible incompatibilities between resources, meaning that some resources
cannot belong to the same station.

Note that in this work, as done in Pralet et al. (2018), we do not directly address
aircraft architecture design, but consider instead a set of assembly operations that allow
to produce the aircraft.

2.2 Constraint Programming approach

In this part, we describe the modelling of the problem, which could be seen as a kind
of Resource-Constrained Project Scheduling Problem (RCPSP) extended with resource
incompatibilities, neutralisation, hard and simple precedence relations and for which we
consider specific criteria.

The assembly line is composed of a set of dimensioning resources, denoted R. Each
resource r 2 R has a capacity capr that represents the number of tasks that can performed
simultaneously by r. Then, the aircraft is divided in several zones, denoted Z. A zone

z 2 Z is a physical area of the aircraft. It has a capacity capz that represents the maximum
number of technicians who can work in the zone at the same time.

A is the set of assembly operations of the aircraft. Each activity a 2 A has a duration
da and occupy one or more zones of the aircraft. For each activity a 2 A and each zone
z 2 Z, occza is the number of technicians required for performing a in z. An activity may
neutralise a set of zones neutra. For example, safety inspection operations must be made
without any technician passing through the inspected zone, and thus neutralises it. An
activity may also require specific machines and tools resources. For all a 2 A and r 2 R,
consu

r
a represents the consumption of the resources r by the activity a.

We consider two types of precedence relation between activities. The first one is Ps 2 A2

and is called simple precedence. If ai and aj are two activities in A, (ai, aj) 2 Ps means
that aj must start after the end of the ai. The second type, hard precedence is denoted
Ph 2 A2. If (ai, aj) belongs to Ph then aj has to start at the end of ai. The precedence
graph induced by Ps and Ph is assumed to be acyclic.

Finally, we consider an incompatibility symmetric relation � ⇢ R2 that models resources
that cannot belong to the same station. Formally, (r1, r2) belongs to � expresses that
resources spans of r1 and r2 cannot overlap. Resource span of r 2 R is the smallest time
interval that contains all intervals of activities consuming r.

In order to formalise this problem with a Constraint Programming approach, for each
activity a 2 A, we consider a variable starta whose domain is [[0, H]] ⇢ N (where H is a
given upper bound of the makespan) and that represents the start date of a. We do not
detail here the formalisation of the constraints described along with the model description.
Example 1 (Toy example). Consider the following build process: activities, resources and
zones along with their capacities are respectively A = {a1, . . . , a5}, Z = {z1, z2}, R =
{r1, r2, r3}, capz2 = 2 and capz1 = capr1 = capr2 = 1, capr3 = 2. Precedence relations
are Ps = {(a2, a5), (a3, a4), (a1, a3)}, Ph = {(a1, a2)} and � = {(r1, r3)}. Consumption of
zones and resources by activities are described on Figure 1. Figure 2 represents a possi-
ble activities configuration satisfying all the constraints. Dashed rectangles represent zone
neutralisation, for instance, a2 and a3 both neutralise z1 at the same time. Activity a5 has
to wait until the end of a4 because of incompatibility between resources r3 and r1.

3

d z1 z2 r1 r2 r3
a1 2 1 n 1
a2 1 n 1 1
a3 2 n 1 1
a4 1 1 1
a5 2 1 2

n stands for zone neutralisation.

Fig. 1: Resources consumption, zones occupation
and neutralisation activities in Example 1.

z1 a1 a5

z2
a2
a3

a4

r1 a1 a2 a4

r2 a3

r3 a5

Fig. 2: A build process scheduling

The objective function should take into account the performance elements mentioned
earlier, that is minimising makespan and minimising takt-time. We choose to consider the
projection of scheduling onto stations by influencing, among other things, the takt-time,
first, then the makespan (lexicographic objective function). In order to model the takt-time,
we first consider the span interval of each resource. If a resource is attached to a unique
station, resources spans will be a lower bound of takt-time. But only considering resource
spans is not representative enough as all stations must have the same duration. This is
why we fix an arbitrary number of stations and try to dispatch all resources span intervals
in at most one station. This corresponds to minimising the number of cuts of resource
spans by stations start/end dates. Because of the different relations between elements and
the fact that all intervals have the same duration, the existence of a problem schedule
without cut for a given scheduling horizon H is not guaranteed. For example, in Figure 2,
consider H = 8 and a division in 2 stations, which means that takt-time is at most 4. A
cut minimisation would put the end of the first station at time 4 (dashed line). In fact,
the resource-span of r1 is cut by this line as it starts at time 0 and ends at time 5. The
other spans are not cut, thus the criterion has a value of 1. Once the number of cuts is
minimised, we minimise the makespan. In the example, the makespan with one cut is 7.

All constraints and criteria in this model can be encoded using intervals and modelling
structures of IBM ILOG Optimization Programming Language (OPL).

3 Experiments

The proposed model has been applied on two real industrial data sets depicting similar
aircrafts, namely Design1 and Design2. In these two data sets, we have a set of 5 dimen-
sioning resources composed of two types of machines: the first type is constituted by robots
(R1 and R2) and the second by specific tools (T1, T2 and T3). They all have a capacity
equal to 1 but note that it would be possible to increase it (done for some experiments
not presented in this paper). Robots and specific tools have an incompatibility relation
((Ri, Tj) 2 � for all i 2 [1, 2] and j 2 [1, 3]). We have about 180 tasks, 48 zones with
capacity 1 by data set. Design1 has about 700 precedence relations and Design2 about 300.

For each experiment, we give the algorithm a maximum time limit of 60 seconds for all
experiments except for the division into seven or more stations that were given a limit of
120 seconds. In addition, each result presented in the abstract has an optimal gap lower
than 0.15 for cases with less than eight stations, lower than 0.25 for the eight stations case.
The scheduling horizon H is equal to the sum of all activities durations. Such a value was
large enough to allow the dispatch of resources to stations without any cut by resource
span.

4

The experiments were run with CpOptimizer 20.1 on 20-core Intel(R) Xeon(R) CPU
E5-2660 v3 2.60GHz, 64GB RAM, Ubuntu 18.04.5 LTS.

Table 1: Results in takt-time by number of stations
k 4 5 6 7 8
Design1 9h54’12 8h53 6h50’15 5h51 5h30
Design2 9h51 9h7’12 9h7’12 9h7’12 9h7’12

Table 1 represents the results obtained on our data sets by varying the number of sta-
tions from 4 to 8. We can notice that with the exception of the 4 stations configuration,
Design1’s takt-times are better than those associated with Design2. In a previous experi-
ment, not presented in this paper, we have calculated for each Design, the overall takt-time
lower bound from resource span. Their values are 5h30 for Design1 and 9h7’12 for Design2.
Thus, we can notice that Design1 reaches its lower bound in the 8 stations configuration,
while Design2 in the 5 stations configuration. So, unless we manage to reduce these bounds
we can not anymore decrease either takt-time or makespan. Depending on the number
of stations chosen, the two designs are Pareto optimal when considering takt-time and
makespan.

4 Conclusion and future works

In this paper, we have proposed a scheduling-based analysis tool that allows us to
evaluate the preliminary aircraft design against its performance on a pulsed assembly line.
The experiments along with the industrial feedback show that the approach is promising.

In some experiments not presented in this paper, we have tested different assembly line
configurations in which activities could choose among various resources of the same type
(e.g. two robots of type R1). It strongly improves the results of Design2. Thus, a first future
work could be to extend the model to add flexibility in the choice of resources (RCPSP

with modes). Another way to continue this work would be to consider costs associated with
the number of stations and takt-time in order to differentiate solutions that are Pareto
optimal in our current approach. Then, we have allowed activities to overlap on more than
one station, but in real world instances, some may require to be performed in a single
station. It might therefore be necessary to add this constraint in future models. Finally,
the addition of an uncertainty on activities’ duration could allow us to propose a more
robust schedule with respect to the assembly line.

References

Polacsek, T., Roussel, S., Bouissière, F., Cuiller, C., Dereux, P. & Kersuzan, S. (2017), Towards
thinking manufacturing and design together: An aeronautical case study, in ‘Conceptual Mod-
eling - 36th International Conference, ER 2017, Proceedings’, Vol. 10650 of Lecture Notes in

Computer Science, Springer, pp. 340–353.
Pralet, C., Roussel, S., Polacsek, T., Bouissière, F., Cuiller, C., Dereux, P., Kersuzan, S. & Lelay,

M. (2018), A scheduling tool for bridging the gap between aircraft design and aircraft man-
ufacturing, in ‘Proceedings of the Twenty-Eighth International Conference on Automated
Planning and Scheduling, ICAPS’, AAAI Press, pp. 347–355.

Sanchidrián, T. B. (2019), Scheduling with limited resources along the aeronautical supply chain:
from parts manufacturing plants to final assembly lines, PhD thesis, Industriales.

A fix-and-optimize heuristic for the resource renting

problem

Max Reinke and Jürgen Zimmermann

Clausthal University of Technology, Germany
max.reinke@tu-clausthal.de, juergen.zimmermann@tu-clausthal.de

Keywords: project scheduling, resource renting, fix-and-optimize heuristic.

1 Introduction

The resource renting problem with general temporal constraints (RRP/max) was in-
troduced by Nübel (2001), and is an extension of the well-known resource availability
problem (RAP). The objective for the RRP/max is to minimize the total resource costs for
a project with general temporal constraints. Typically, each activity in a project uses re-
sources during its execution. In many cases, those resources have to be rented, for example,
heavy machinery on construction sites. The renting of resources induces two types of costs,
namely time-independent procurement cost and time-dependent renting cost. In this pa-
per, we present a MIP based fix-and-optimize heuristic for the RRP/max. In Section 2 the
RRP/max is described formally. Section 3 presents our fix-and-optimize heuristic. Finally,
in Section 4 the results of a computational study for the heuristic are presented.

2 Problem description

We assume that the underlying project is given as an activity-on-node network N =
⟨V, E; δ⟩, where the nodes V represent the activities and arcs E ⊆ V × V represent general
temporal constraints between activities. For every arc ⟨i, j⟩ ∈ E a weight δij is given. The
prescribed project deadline d̄ is observed by the arc weight δn+1,0 = −d̄. A sequence of start
times Si for all activities i ∈ V represents a schedule S = (S0, S1, . . . , Sn+1), which is called
time-feasible if Sj −Si ≥ δij for all ⟨i, j⟩ ∈ E. For activity i all time-feasible start times are
given by Wi = {ESi, ..., LSi} with the earliest start time ESi and latest start time LSi.
Moreover, each activity i ∈ V is assigned a duration pi ∈ Z≥0 and has to be performed
without preemption. We suppose that renewable resources k ∈ R are used to perform the
project, where the execution of activity i needs an amount rik ∈ Z≥0 of resource k ∈ R.
Examples for this type of resources are machines or workers. They are not depleted when
used for executing an activity but can be assigned for the duration pi and then used again
later for different activities. We assume all resources have to be rented, and resources can
only be used while they are rented and thus available to the project. Associated with renting
resources are two types of costs, procurement cost cp

k arise every time additional resource
units are obtained and represent for example setup costs or overhead. The second type of
cost are the time-dependent renting cost cr

k per unit and period, those cost represent the
rate for which one unit of resource k can be rented for a time period. A resource is available
at point in time t, if it was procured in the interval [0, t] and availability of one unit of
resource k for t periods incurs cost of cp

k +t ·cr
k. The resource availability is determined by a

renting policy ϕk(S, t), which specifies when resources are procured or released. The policy
must be determined such that ϕk(S, t) ≥

∑
i∈V |Si≤t<Si+pi

rik for all k ∈ R and t ∈ T
holds. The objective of the RRP/max is to find a time-feasible schedule and a renting
policy that minimize the total costs incurred by renting resources. For the case cp

k < cr
k an

optimal renting policy is to procure additional resources when the resource demand has a

positive step discontinuity at t and to release idle resources immediately, since procuring
new resources is less expensive than keeping unused resources available. In general cp

k > cr
k

holds, here procurement costs of a resource k are higher than renting costs for one period.
In this case, we can define span = ⌊cp

k/cr
k⌋ as the maximum number of time periods for

which it is beneficial to hold unused resources if they are used again later in the project.
For the RRP/max we use a time-indexed formulation with binary variables xit for all

i ∈ V and t ∈ T , where xit = 1 if activity i starts at point in time t. To model the resource
demand, we use the variable zkt representing the amount of resource k ∈ R needed at
t ∈ T . The renting policy ϕk(S, t) is modeled using positive variables akt and wkt, which
represent the number of units of resource k procured or released at point in time t. With
the defined variables, the following MILP can be formulated.

Min
∑

k∈R
cp

k

∑
t∈T

akt +
∑

k∈R
cr

k

∑
t∈T

t · (wkt − akt) (1.1)

s.t.
∑

t∈Wi

xit = 1 (i ∈ V) (1.2)
∑LSi

τ=t
xiτ +

∑min {LSj ,t+δij−1}

τ=ESj

xjτ ≤ 1 (⟨i, j⟩ ∈ E, t ∈ T) (1.3)

∑
i∈V

rik

∑min{t,LSi}

τ=max{ESi,t−pi+1}
xiτ ≤ zkt (k ∈ R, t ∈ T) (1.4)

∑t

τ=0
(akτ − wkτ) ≥ zkt (k ∈ R, t ∈ T) (1.5)

∑
t∈T

akt −
∑

t∈T
wkt = 0 (k ∈ R) (1.6)

akt, wkt, zkt ∈ Z≥0 (k ∈ R, t ∈ T) (1.7)
xit ∈ {0, 1} (i ∈ V, t ∈ Wi) (1.8)

Constraints (1.2) state that every activity has to be started exactly once. (1.3) ensure
that all temporal restrictions between activities are satisfied. We use the formulation of
Christofides et al. (1987), in the form used by Rieck et al. (2012) for general temporal
constraints. Lower bounds on the value of variables zkt are assigned by constraints (1.4).
The available (rented) resources at time t are given by

∑t
τ=0(akτ −wkτ), hence inequalities

(1.5) ensure a feasible renting policy ϕk(S, t) ≥ zkt for all k ∈ R and t ∈ T is obtained. All
added resources have to be withdrawn by the end of the project, see (1.6). Also, additional
restrictions on the renting policy are used as proposed in Reinke and Zimmermann (2020).

3 A fix-and-optimize heuristic

To solve the RRP/max, we propose a fix-and-optimize heuristic, based on the basic
principle presented in Sahling et al. (2009). The general procedure is to iteratively create
and solve a predetermined number of subproblems l ∈ L. For a given schedule S the
values for xit can be set, resulting in the problem to obtain an optimal renting policy,
which can be solved with the algorithm provided by Nübel (2001) with a time complexity
of O(n log n). When solving the MILP for an instance of the RRP/max, determining the
binary scheduling variables xit requires most of the computational effort. In general, the fix-
and-optimize heuristic, outlined in Algorithm 1, aims to define subproblems with less binary
decision variables to consider, which are therefore easier to solve. For each subproblem a set
of activities Iopt is chosen to be optimized. From this we derive the set of fixed activities
Ifix := V \ Iopt, for which the corresponding binary scheduling variables xit are set to
fixed values x̄it. The fixed values are taken from the optimal solution of the preceding
subproblem. This reduces the number of activities to be scheduled in each iteration to
|Iopt| < |V |. A subproblem is constructed by adding the following constraints to the MILP.

xit = x̄it (i ∈ Ifix, t ∈ T) (1.9)

Note the real-valued variables zkt, akt and wkt are not fixed. A standard MIP solver
is then used to solve the subproblem to optimality. The next subproblem is defined by
choosing a new set Iopt.

Algorithm 1: General algorithm for the heuristic

begin

Generate a starting solution Sstart = (S, a, w);
Set l := 1;
while l ≤ L do

Choose Iopt ;
Set Ifix := V \ Iopt ;
for i ∈ Ifix do

Set xit = x̄it ∀(i, t);

Solve RRP-SUB using CPLEX;
Set Iopt = ∅ and Ifix = ∅;
Set l := l + 1;

Return locally optimal solution (S, a, w) ;

A starting solution (Sstart, a, w) for the fix-and-optimize heuristic is obtained by a
priority-rule based construction heuristic. First all activities for which TFi = LSi−ESi = 0
are scheduled at their earliest start time. Then an optimal renting policy (a, w) for the corre-
sponding partial schedule SC , where C is the set of already scheduled activities, is computed.
While not all activities are scheduled, the next i from the set of unscheduled activities C̄ is
determined by a priority-rule. Moreover, Si = t∗ is set, where t∗ is some point in time for
which the total resource cost are minimized for the new partial schedule, including i, with
the corresponding renting policy. The optimal solution for the RRP/max can be found
among the set of quasistable schedules (Neumann et al. (2003)), thus only t∗ which lead to
a quasistable schedule have to be considered. We denote ESi(SC) (LSi(SC)) as schedule
dependent earliest (latest) start time and respectively Wi(SC) = {ESi(SC), ..., LSi(SC)}
as set of possible start times. Also ST (SC) contains all points in time t where an ac-
tivity starts in SC and CT (SC) where an activity is completed. With this the set of
decision points is given by Di(SC) := {ESi(SC), LSi(SC)} ∪ {Wi(SC) ∩ CT (SC)} ∪ {t ∈
Wi(SC)|t + pi ∈ ST (SC)}, to obtain a quasistable schedule. When constructing a starting
solution we examined the priority-rules GRD, GRR and MST as found in Neumann et al.

(2003). Preliminary test showed a good starting solution generally yields better results.
GRD provided the best starting solutions for most instances.

To choose the mopt activities incorporated in set Iopt, we devised three strategies named
Random, Add and Tree. For the first strategy Random a number of mopt activities are
chosen at random from set V of all activities. Maximal time lags can result in cases where
|Wi(S)| = 1, then the starting time of an activity is constraint to one point in time t. These
activities can be identified by their schedule dependent total float time TFi(S) = 0. In the
second strategy Add, mopt activities are taken at random from among eligible activities Ielig,
where initially an activity i is eligible if TFi(S) = 0. Every time an activity i is chosen,
Ielig is updated to include all activities j for which Sj − Si = δij |(j ∈ Succi ∩ j ∈ Iopt)
or |Si − Sj = δij |(j ∈ Predi ∩ j ∈ Iopt) holds in the current solution. The third strategy
uses the property of quasistable schedules to be represented by a tree of binding temporal
constraints where Sj − Si = δij and schedule induced precedence constraints. Here we only
consider binding temporal constraints, which results in a number of disjointed subtrees in
N . When an activity i is chosen randomly from Ielig, all activities belonging to the same
subtree are also added to Iopt.

4 Performance analysis

To fathom the performance of our fix-and-optimize algorithm a computational study
was conducted. The heuristic was implemented in C++ where the subproblems are solved
by using IBM CPLEX v.12.8.0, on a computer with an Intel Core i7-7700 with 4.2 GHz
and 64 GB RAM under Windows 10. As problem instances we used adaptations of the well-
known benchmark test set UBO (Schwindt 1998) where we introduced a project deadline
d̄ = α · ESn+1 with α = {1, 1.25, 1.5} and procurement costs cr

k = CQ · cp
k with CQ = 0.25.

For every combination of parameters α and CQ, 30 instances with n = {20, 50} and an
order strength of 0.5 were tested. Some results of our study are shown in Table 1. The
given gap is the average deviation of the found solutions compared to the best solution
found by CPLEX after 600s for n = 20 and 3600s for n = 50, for all 30 instances with the
same parameter combination. For all runs, based on preliminary tests, L = 20 was chosen.
Generally we can observe a good performance of the heuristic across all tested instances.
Especially for the instances with n = 50 and α = 1, 5, the fix-and-optimize heuristic greatly
outperformed CPLEX by obtaining significantly better solutions in a reasonable time. Of
the tested selection strategies for Iopt, we can see the best performance regarding the gap
from the strategy Tree. Concerning the number of activities in Iopt we tested |Iopt| = 6
and |Iopt| = 10 and found the larger number to yield better gap but also required greatly
increased solution times.

Table 1. Results of the computational study

Random Add Tree Random Add Tree
|Iopt| = 6 |Iopt| = 6 |Iopt| = 6 |Iopt| = 10 |Iopt| = 10 |Iopt| = 10

n α CQ gap time gap time gap time gap time gap time gap time

20 1 0,25 0,6 4,0 0,7 4,3 0,6 3,0 0,1 25,6 0,1 20,6 0,1 9,4
20 1,25 0,25 3,9 6,7 3,9 7,0 2,9 13,5 2,5 87,8 2,7 89,9 1,6 98,1
20 1,5 0,25 3,9 14,8 3,7 12,5 2,0 94,2 1,6 137,2 2,5 260,9 1,2 172,5
50 1 0,25 2,4 11,4 2,5 12,8 2,3 19,5 1,8 32,4 1,7 33,8 2,0 28,2
50 1,25 0,25 2,3 19,5 2,5 19,3 1,6 89,0 1,4 54,2 1,1 52,5 1,1 170,0
50 1,5 0,25 -6,6 33,5 -6,8 37,8 -7,2 278,0 -7,6 95,2 -7,6 150,6 -8,0 363,4

References

Christofides N., Álvarez-Valdés R., Tamarit J.M., 1987, “Project scheduling with resource con-
straints: A branch and bound approach”, European Journal of Operational Research, Vol. 29,
pp. 262-273.

Neumann K., Schwindt C., Zimmermann J., 2003, “Project Scheduling with Time Windows and
Scarce Resources”, Springer, Berlin Heidelberg, 2nd edition.

Nübel H., 2001, “The resource renting problem subject to temporal constraints”, OR Spectrum,
Vol. 23, pp. 359-381.

Rieck J., Zimmermann J., Gather T., 2012, “Mixed-integer linear programming for resource lev-
eling problems”, European Journal of Operational Research, Vol. 221, pp. 27-37.

Reinke M., Zimmermann J., 2020, “A Comparison of two MILP formulations for the resource rent-
ing problem”, Accepted Paper at the 17th International Conference on Project Management
and Scheduling. Available on: https://pms2020.sciencesconf.org/298538/document

Sahling F., Buschkühl L., Tempelmeier H., Helber, S., 2009, “Solving a multi-level capacitated lot
sizing problem with multi-period set up carry-over via a fix-and-optimize heuristic”, Comput-
ers & Operations Research, Vol. 36, pp. 2546-2553.

Schwindt C., 1998, “Generation of resource-constrained project scheduling problems subject to
temporal constraints”, Technical Report WIOR-543, University of Karlsruhe.

1,2 1 2 1

1 ??

2

1||
P

Cj

1|rj ; dj |
P

Cj

1|rj ; dj |
P

Cj NP
1|rj ; dj |

P
Cj

1|rj ; pmtm|
P

Cj 1|sp� graph|
P

wjCj

1|rj ; dj |
P

Cj

MP

??

1|rj ; dj |
P

Cj

1|rj ; pmtn|
P

Cj

Cj

1|rj ; dj |
P

Cj 1|rj ; pmtn;MP |
P

Cj

j
pj

rj
dj 1 1 1

d3 d1 d5

0 4 10 16 19 22 28

2 3
MP 2 1

MP 2 5 5
MP 5 4 6 1

1|rj ; pmtn;MP |
P

Cj

1|rj ; pmtn;MP |
P

Cj

1|rj ; pmtn;MP |
P

Cj S
S⇤

t i S j S⇤

S0⇤ S⇤ t i
j rj  t ri  t S0⇤ S0⇤

S0⇤ S⇤ t S0⇤ S
S

S⇤ S0⇤

S0⇤

S⇤

bpk k pk Ck

C 0
k S⇤ S0⇤

[lstk, eftk[= [dk � pk, rk + pk[

i j t
S⇤ S0⇤ t

Sú

SÕú

t

t

j i
MP

j i
j

MP
j j i

Cj Ci

i i
MP i j

j
MP

j j

C Õ
i C Õ

j

Sú

SÕú

t

t

j i j i
MP i j i j

Ci Cj

i i
MP

j j j j

C Õ
i C Õ

j

i j t
i j

i j
S⇤ S0⇤ i j

i j S0⇤ C 0
i C 0

j

i j
i j S0⇤ j

j S⇤ S0⇤

C 0
j = Cj = eftj C 0

i  Ci

S0⇤ S⇤ i
S0⇤ i efti

ri S0⇤ i [t, efti[
S⇤ S0⇤ t i S⇤

Ci > C 0
i = efti C 0

j = max(Ci, Cj) C 0
j = Cj S0⇤ S⇤

S⇤ C 0j = Ci bpi < bpj bpi
bpj j i S j

t i i [t, efti[bpj > bpi

4FT = Ci � C 0
i + Cj � C 0

j

=⇢⇢Ci � C 0
i + Cj �⇢⇢Ci

= Cj � C 0
i

= Cj � efti

4FT � 0 Cj > efti bpj > bpi i j

[t,min(efti, eftj)[

O(n log n)

dj

1|rj ; dj |
P

Cj

1|rj ; pmtn|
P

Cj 1|rj ; pmtn|
P

Cj 1|rj ; pmtn;MP |
P

Cj

dj

j
pj

rj
dj 1 1

0 4 14 15

2 3 1 3

d1

dj

0 4 11 15

2 1 3

d1

dj

1|rj ; pmtn;MP |
P

Cj

1|rj ; dj |
P

Cj

1|rj ; dj |
P

Cj 1|rj ; dj ; pmtn|
P

Cj NP

1

A realistic hybrid flow shop scheduling problem with

availability restrictions, priorities, and machine

qualifications

Christin Schumacher1 and Dominik Mäckel2

1 TU Dortmund University, Department of Computer Science - Modeling and Simulation,
Germany christin.schumacher@tu-dortmund.de

2 TU Dortmund University, Department of Computer Science - Modeling and Simulation,
Germany dominik.maeckel@tu-dortmund.de

Keywords: heuristics, machine availability, priority, machine qualification, hybrid flow
shop, makespan.

1 Introduction

While real-world problems in practice contain numerous restrictions, problems in the
literature mostly consider a few specifications at a time [1]. Our problem of an automotive
supplier includes two production stages, where both stages contain unrelated machines
(FH2, ((RM (k))2

k=1)). Machine qualifications have to be considered (M
j

), jobs might skip
a stage (skip), priority groups of jobs need to be respected (prec), machines might not
be available at beginning the production (rm), and machines have times of unavailability
(unavial) [2, 3]. The objective is to minimize makespan C

max

. According to Graham et al.
[4], our problem can be categorized as follows:

FH2, ((RM (k))2
k=1) | Mj

, prec, skip, rm, unavail | C
max

(1)

In the following, heuristics and metaheuristics are compared to determine the best solu-
tion method, concerning short computation times. Furthermore, a mixed-integer problem
(MIP) is used for comparison. All developed methods are tested on historical data of the
use case so that the most promising algorithms for the company can be found.

2 Related Work

Even for the problem of two identical parallel machines on one stage, and one machine
on the other stage, Gupta [5, pp. 359–360] has proved NP-hardness. So hybrid flow shop
problems are considered as NP-hard. Due to high computation times for NP-hard problems,
MIP models, even for small instances of jobs, are often not applicable in practice. However,
they are useful for benchmarks.

To the best of our knowledge, no study has developed a heuristic algorithm or a MIP for
our problem (1). In their literature overviews Ribas, Leisten, and Framiñan [6], Komaki,
Sheikh, and Malakooti [7], and Ruiz and Vázquez-Rodríguez [2] mention several hybrid flow
shop problems. Listed problems of papers conform at most with one or two restrictions to
Mj, prec, skip, rm or unavail. The problem which is most familiar to our application case
is provided by Ruiz, Şerifoğlub, and Urlings [1] and is at the same time one of few papers
dealing with six realistic restrictions in one hybrid flow shop environment. But, since our
application case differs in several restrictions from the mentioned papers, algorithms in
literature cannot be applied for (1).

https://orcid.org/0000-0002-9847-0443
https://orcid.org/0000-0002-7866-7927

2

3 Heuristic and metaheuristic methods

For the presented scheduling problem, eight priority rules, one genetic algorithm (GA),
twelve local search strategies, and four simulated annealing variants are developed. Applied
priority rules are extensions of Shortest Processing Time (SPT) [3], Longest Processing
Time (LPT) [3], Johnson’s algorithm and NEH [1]. For second stage scheduling, priority
rules are combined with Earliest Completion Time (ECT) or job-based relation (JBR).
ECT selects the job with the shortest completion time from all jobs to be scheduled and
JBR preserves the permutation of jobs from the first stage. All developed priority rules use
ECT for machine assignment at the stages, where the algorithm successively schedules the
next element of an ordered list of jobs to the machine that can complete the job first and is
available at the dedicated time and eligible for the job. Each priority group gets scheduled
separately beginning with the highest priority.
Local search strategies have been tested in six variants:

– The neighborhood can be explored by generating a defined amount of moves from the
current schedule and selecting the solution with best objective value, in case of improved
makespan (Steepest Descent) or by selecting a random neighbor and accepting the
solution, in case of improved makespan (Random Descent).

– The neighborhood can be build by "shift" and "swap" moves. "Shift" moves a random
job to a random position in the schedule. "Swap" selects two random jobs and exchanges
their positions. Both operations preserve machine qualifications and priority groups.

– Steepest descent can be executed using a tabu list that contains a finite set of prohibited
moves to solutions that have already been visited. Tabu search also accepts solutions
with equal C

max

.
– Again, for all variants, ECT or JBR can be chosen for scheduling the second stage (see

priority rules).

Simulated Annealing is expanded from the algorithm of Kirkpatrick, Gelatt, and Vecchi
[8]. It enables escaping from local minima by accepting solutions with larger C

max

by a
given probability defined by the current temperature that is decreasing over the optimiza-
tion process. It is also combined with neighborhood strategies "shift" or "swap". ECT or
JBR can be applied to schedule the second stage.

In addition, genetic algorithm (GA) by Wu, Liu, and Wu [9] is modified. If a crossover
or mutation operation results in a non-feasible chromosome, the chromosome is reset after
the particular operation and the further algorithm again uses the original instance. To
ensure priority orders, priorities are ensured in each operation.

4 Results

Developed scheduling heuristics are applied to the historical production data of the
company. The first step to evaluate the algorithms is to determine the benchmark using
a developed MIP by the authors. For our MIP model, we have extended the model by
Ruiz, Şerifoğlub, and Urlings [1] to the constraints unavail and prec. Even after 3 days of
computation time, the optimality of some solutions for weeks with high production volume
cannot be proven via the MIP. On average of evaluated weeks, the gap is about 13 %. As
well, a few weeks are tested with a maximum computation time of 14 days. Despite the
high additional computation time, no significant improvements are generated.

Also, results of heuristics and metaheuristics did not provide better C
max

-values. Thus,
it can be concluded that the benchmarks of MIP are almost optimal. In the following,
heuristics and metaheuristics are compared to benchmarks in order to measure their per-
formance as follows: �C

max

= heuristic solution � MIP solution

MIP solution

.

3

In contrast to MIP, all heuristic algorithms need less than one minute to provide solu-
tions. Using �C

max

, priority rules are compared over 20 selected calendar weeks (Figure 1).
Besides, Table 1 calculates averages for all weeks. The evaluation shows, that SPT has the
worst performance with both second stage strategies and NEH is the best priority rule
with both second stage strategies. In the midfield, LPT dominates Johnson’s algorithm.

36 37 38 39 40 41 42 43 44 19 20 21 22 23 24 25 26 27 28 29
Calendar week

0.0

0.2

0.4

0.6

0.8

1.0

1.2

�
C

m
ax

Method

SPT with ECT

LPT with ECT

NEH with ECT

JOHNSON with ECT

SPT with JBR

LPT with JBR

NEH with JBR

JOHNSON with JBR

Fig. 1: �C
max

of heuristics over the selected
evaluation period.

Method avg. �C
max

NEH with ECT 0.249141
NEH with JBR 0.249370
LPT with ECT 0.251440
JOHNSON with ECT 0.282263
LPT with JBR 0.297500
JOHNSON with JBR 0.329924
SPT with ECT 0.387423
SPT with JBR 0.411233

Table 1: Comparison of �C
max

for selected
heuristics using ECT as second stage strat-
egy.

In the field of metaheuristics, GA with 90 000 objective function evaluations dominates
the other metaheuristics (see figure 2 and table 2). Since the local search strategies evaluate
5 000 iterations, the parameters of the genetic algorithm have been reduced in "GA5000"
to match with local search strategies regarding the number of function evaluations. Tabu
search performs slightly better than local search strategies without tabu list in both cases.
When "shift" is applied, it dominates "swap" in all cases. Also, simulated annealing is
dominated by the other metaheuristics. Therefore, simulated annealing and "swap" are
not considered in the tables and figures of this paper. All local search strategies perform
significantly best by applying NEH as the initial solution. This shows a significant influence
of the initial solution on the solution quality.

36 37 38 39 40 41 42 43 44 19 20 21 22 23 24 25 26 27 28 29
Calendar week

0.0

0.2

0.4

0.6

0.8

�
C

m
ax

Method

Random Descent (shift) with LPT

Steepest Descent (shift) with LPT

Random Descent (shift) with NEH

Steepest Descent (shift) with NEH

Tabu Search (shift) with NEH

Tabu Search (shift) with LPT

GA

GA5000

Fig. 2: �C
max

of metaheuristics over the se-
lected evaluation period.

Method avg. �C
max

GA 0.073729
Tabu Search with NEH 0.134955
Steepest Descent with NEH 0.139813
Random Descent with NEH 0.139913
GA5000 0.156668
Tabu Search with LPT 0.162064
Random Descent with LPT 0.166863
Steepest Descent with LPT 0.167259

Table 2: Comparison of �C
max

for selected
metaheuristics using ECT as second stage
strategy and shift move for local searches.

4

5 Conclusion

For our problem (1) a MIP, several heuristics, and metaheuristics have been developed
and tested in manufacturing production. Regarding priority rules, NEH performs best.
Comparing metaheuristics, a genetic algorithm with 90 000 function evaluations provides
the best results followed by tabu search which only needs 5 000 iterations and lower compu-
tation time. For real-world applications, in future work, algorithms have to be modularized,
so that it is possible to synthesize them automatically and reduce manual modeling effort.

References

[1] Rubén Ruiz, Funda Sivrikaya Şerifoğlub, and Thijs Urlings. “Modeling realistic hybrid
flexible flowshop scheduling problems”. In: Computers and Operations Research 35.4
(2008), pp. 1151–1175.

[2] Rubén Ruiz and José Antonio Vázquez-Rodríguez. “The hybrid flow shop scheduling
problem”. In: European Journal of Operational Research 205.1 (2010), pp. 1–18.

[3] Michael L. Pinedo. Scheduling. Theory, Algorithms, and Systems. 5th ed. Cham:
Springer International Publishing, 2016.

[4] R.L. Graham et al. “Optimization and Approximation in Deterministic Sequencing
and Scheduling: a Survey”. In: Annals of Discrete Mathematics 5 (1979), pp. 287–326.

[5] Jatinder N. D. Gupta. “Two-Stage, Hybrid Flowshop Scheduling Problem”. In: The
Journal of the Operational Research Society 39.4 (1988), p. 359.

[6] Imma Ribas, Rainer Leisten, and Jose M. Framiñan. “Review and classification of
hybrid flow shop scheduling problems from a production system and a solutions pro-
cedure perspective”. In: Computers & Operations Research 37.8 (2010), pp. 1439–1454.

[7] G. M. Komaki, Shaya Sheikh, and Behnam Malakooti. “Flow shop scheduling problems
with assembly operations: a review and new trends”. In: International Journal of
Production Research 57.10 (2019), pp. 2926–2955.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by simulated annealing”.
In: Science 220.4598 (1983), pp. 671–680.

[9] Yi Wu, Min Liu, and Cheng Wu. “A genetic algorithm for solving flow shop scheduling
problems with parallel machine and special procedure constraints”. In: Proceedings of
the 2003 Proceedings of the Second International Conference on Machine Learning
and Cybernetics. New York, N.Y and Piscataway, N.J: IEEE, 2003, pp. 1774–1779.

1

Two-stage stochastic/robust single machine scheduling

based on groups of permutable jobs

Louis Riviere1,2,3, Christian Artigues1,2 and Hélène Fargier1,3

1 Artificial and Natural Intelligence Toulouse Institute, Université de Toulouse, France
2 LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

3 IRIT, Université de Toulouse, CNRS, UPS, Toulouse, France

Keywords: Scheduling, Uncertainty, Permutable operation groups.

1 Introduction

This paper considers a single machine scheduling problem with release dates, due dates,
precedence constraints and aiming for the minimization of the maximum lateness or the
sum of completion times over a sampled set of release dates scenarios, either in a stochastic
or robust setting. The standard 2-stage approach for stochastic and robust scheduling on
a single machine (Kouvelis and Yu 1997) considers first-stage decisions that output a full
ordering (sequence) of the jobs (J-SEQ) on the machine and second-stage decisions that
set the job start times in accordance with the information of a given scenario. In this
paper, we study the performances of an alternative 2-stage solution method based on
groups of permutable jobs. The method, initially e in (Artigues et. al. 2016), considers
first-stage decisions that output only a partial ordering in the form of a sequence of groups
of permutable jobs (G-SEQ). Given a scenario, the second stage policy orders the jobs
inside each group according to the earliest realized release date first heuristic.

In this paper, we introduce a constraint programming approach to compute an optimal
G-SEQ solution but show that in a limited time, it provides poor quality solutions on
the largest instances compared to a standard J-SEQ solution approach. We then design
several heuristics that use a portion of the time limit to obtain good quality J-SEQ starting
solutions and then switch to G-SEQ solutions via greedy or local search. The best G-SEQ
heuristics outperform all of the standard J-SEQ approaches under the same time limit.

2 Problem definition

The problem consists in scheduling a set of jobs N given uncertain release dates de-
scribed by a set of discrete scenarios S. We define a problem with |N | jobs and |S| scenarios
as a tuple P = (P,R,D,E,�, �) where p

i

2 P is the duration of job i, rs
i

2 R is the release
date of job i in scenario s, d

i

2 D is the due date of job i, E is the set of precedence
constraints ((i, j) 2 E iff job i must be scheduled before job j). Parameter � 2 {max, avg}
is the objective aggregator amongst scenarios, and � 2 {L

max

,

P
C

i

} is the objective type.
Classically � = max corresponds to robust optimization while � = avg corresponds to
stochastic optimization.

Solutions to scheduling problems are usually schedules, i.e a start time for each job.
But with uncertain parameters, such solutions might either be invalid or too conservative.
That is why we study two types of 2-stage solution methods, that take advantage of the
information available when a scenario occurs to adjust the schedule.

We consider two different settings for the first stage decision : respectively job sequences
(J-SEQ) and sequences of groups of permutable jobs (G-SEQ):

2

Job sequences A valid job sequence (J-SEQ) is a total ordering of the jobs such that
for any pair (i, j) 2 E, i � j in the sequence. Given a J-SEQ and a scenario, the best
associated start times are the left-shifted ones as semi-active schedules are dominant for
our objectives (Kouvelis and Yu 1997).

Group sequences A sequence of groups of permutable jobs (G-SEQ) is an ordered
partition of the set of jobs: ⇡ = G1|G2| . . . |Gk

where G

i

✓ N ; G
i

\G

j

= ;;
S

i=1..k Gi

= N .
It is a valid solution if for any pair (i, j) 2 E, the group of job i is ordered strictly before the
group of job j in the G-SEQ. With this condition, a G-SEQ represents a potentially large set
of ⇧

i=1..k|Gi

|! valid jobs sequences. Given a G-SEQ and a scenario, we use the "Earliest
release date first" heuristic to compute a full job sequence, and then the corresponding
left-shifted schedule. The "Earliest release date first" heuristic allows for non anticipation
about the scenario : jobs are scheduled when they are ready.

We notice that J-SEQs are a special case of G-SEQs, where each group contains a single
job only. As such, G-SEQs are in theory better than J-SEQs, but due to the much larger
search space, in a limited time, it is not easy to predict which approach will give the best
results.

3 Constraint programming models

In this Section we present a constraint programming (CP) model for each approach.
For both models, we let jobs have a different start time in each scenario, but all start times
must be consistent with a unique J- or G-SEQ across all scenarios. Algorithm 1 describes
the key constraints in the CP model used for G-SEQ computation using IBM CP Optimizer
(CPO) modeling.

Algorithm 1 CP model for G-SEQ computation
1: for s 2 S do

2: StartOf(Job[i, s]) � rs
i

8i
3: NoOverlap(Sequence(Job[:, s]))
4: for (i, j) 2 N2

do

5: (i, j) 2 E ! g
i

< g
j

{g
i

is the group number of job i}
6: g

i

< g
j

! Job[i, s] before Job[j, s]
7: if Release(i, s)  Release(j, s) then

8: g
i

== g
j

! EndOf(Job[i, s])  StartOf(Job[j, s])
9: else

10: g
i

== g
j

! EndOf(Job[j, s])  StartOf(Job[i, s])
11: end if

12: end for

13: end for

The CP model for J-SEQ computation is derived from IBM’s "stochastic jobshop"

example, which uses the IloSameSequence() constraint to enforce sequence unity across
all scenarios. Both models encapsulate the online scheduling policy associated with selected
solutions.
However, we will see in section 5 that even though G-SEQs are better in theory, for larger
instances within 5 minutes, CPO gets much better results using the J-SEQ model than the
G-SEQ model. In order to take advantage of the good performance of the J-SEQ solver,
but still retain in some of the possible gain and flexibility of G-SEQs, we then introduce
heuristic G-SEQ solvers based on a good J-SEQ starting solution.

3

4 Heuristics

In addition to the two CP models described in Section 3, several solvers were imple-
mented and compared. The idea for most of them is to use as a starting point a good
J-SEQ provided by a short run of the J-SEQ CP model with CPO. For each heuristics,
parameters were selected empirically, the goal being not provide a state of the art G-SEQ
solver, but to show that even with limited time, it can be more efficient to use G-SEQs
than J-SEQs.
On the G-SEQ side, we introduced the following heuristics:

– Warm-CP* : G-SEQ CP model guided with a starting J-SEQ solution.
– Greedy : A simple greedy heuristic, after shuffling the jobs, at each step it inserts the

jobs in an existing group or between existing groups to maximize the objective.
– Taboo* : A taboo list algorithm based on the neighborhood defined by moving one job

from a group to another group or between existing groups.
– GA* : A genetic algorithm in which the crossover operator is an adaptation of the

one-point crossover to G-SEQs : if ⇡

A

and ⇡

B

are the selected individuals, with x

being the crossover point, the offspring is the concatenation of the first x groups of
⇡

A

(G

⇡A
1 | . . . |G⇡A

x

) with the groups of ⇡
B

(in which the jobs already in G

⇡A
1 | . . . |G⇡A

x

are removed). Mutation operators include moving jobs (as in Taboo), switching group
orders, merging groups and splitting groups.

On the J-SEQ side we also propose GA, Greedy and Taboo heuristics producing standard
J-SEQ solutions based on similar neighborhoods and other components as their G-SEQ
counterparts for fair comparisons.

5 Experimental results and comparisons

THe solvers have been tested on a custom benchmark of instances generated using 4
parameters: N: the number of jobs; S : the number of scenarios; � : the variability of the
release date around a base value for each scenario; and ⇧ : the density of the precedence
graph. The solvers were run on a single worker (Xeon E5-2695 v4 @ 2.10GHz processor)
with a 5 minutes timeout. The CP models were solved by IBM CP Optimizer 20.1. For
warm start solvers (indicated by * in section 4) the output of the J-SEQ CP model after
1 minute was used as starting point for the solver for the remaining 4 minutes.

We compare the solvers based on :

– performance (best/score) : the ratio of the best score reached by any solver to the score
reached by the solver on the same instance. Hence the best solution for a given instance
has a performance of 1.

– majoring (#best/#instance) : the percentage of instances where the solver had the
best solution among compared solvers.

We first compare the exact solution approaches in terms of the above-defined perfor-
mance criterion (columns CP and Warm-CP in Table 1). For small problem, the G-SEQ
CP model manages to solve most instances optimally and has a better performance than
the J-SEQ CP model, which is conform to the theory. As the number of job increases,
the J-SEQ CP model performs in average better than the G-SEQ CP model, especially
for L

max

objective (although there is a high standard deviation in the data due to the
nature of L

max

objective). The performance of Warm-CP shows that providing a starting
solution to the G-SEQ CP model significantly improves its performances, but it still per-
forms worse than the J-SEQ CP model on the largest instances. Also, contrary to what

4

could be expected, increasing the number of scenarios relatively decreases the G-SEQ CP
model performances for L

max

objectives, but increasing scenario variability does increase
its relative performance.

We now turn to the comparisons of heuristics. Table 1 shows that over tested instances,
the G-SEQ GA consistently performs better than other solvers on larger instances, while
almost as good as exact G-SEQ solvers on small instances. The G-SEQ GA also obtains
the the largest percentage of best solutions (0.82).

The G-SEQ Greedy performs remarkably well on the N = 10 and N = 20 instances and
then its performance quickly decreases but remain higher than the G-SEQ CP model, which
puts emphasis on the weakness of the latter. J-SEQ-restricted counterparts of heuristics
perform worse than their unrestricted counterparts and slightly worse than the J-SEQ CP
model on average.

In general, the relative performance and majoring rate of all J-SEQ solvers is lower on
instances with higher variation �, with the notable exception of J-SEQ Greedy, for which
an improvement is observed . On the other hand, the relative performance of J-SEQ based
solvers improves on instances with higher precedence density ⇧, which can be expected
since the possibility of grouping jobs is decreased.

Overall, several G-SEQ solvers are able to improve the average performance of the
input J-SEQ more than the J-SEQ CP model within the same time, showcasing that it
can be beneficial to compute G-SEQ solutions, even within limited time. GA seems to be
a good starting point to implement a truly efficient G-SEQ solver in the future. Efficient
constraint propagation on the G-SEQ CP model is also a future research direction.

Table 1. Performance comparison for all solvers (best score/solver score)

G-SEQ J-SEQ
obj N CP Warm-CP Taboo GA Greedy CP Taboo GA Greedy
avg 10 1.0000 1.0000 0.9961 0.9997 0.9998 0.9537 0.9537 0.9537 0.9537
L

max

20 0.9397 0.9993 0.9910 0.9967 0.9899 0.9479 0.9473 0.9476 0.9450
50 0.5717 0.9783 0.9934 0.9981 0.7561 0.9648 0.9620 0.9627 0.7439
100 0.3983 0.9639 0.9876 0.9931 0.5732 0.9853 0.9726 0.9720 0.5680

avg 10 0.9980 0.9997 0.9983 0.9997 1.0000 0.9793 0.9792 0.9793 0.9793P
C

i

20 0.9611 0.9923 0.9949 0.9984 0.9968 0.9748 0.9743 0.9749 0.9749
50 0.8690 0.9813 0.9946 0.9988 0.9596 0.9786 0.9784 0.9798 0.9590
100 0.8394 0.9575 0.9712 0.9988 0.8876 0.9726 0.9631 0.9725 0.9060

max 10 1.0000 1.0000 0.9934 0.9996 1.0000 0.9614 0.9614 0.9614 0.9614
L

max

20 0.9913 1.0000 0.9885 0.9971 0.9921 0.9624 0.9624 0.9624 0.9591
50 0.6950 0.9958 0.9923 0.9968 0.7709 0.9786 0.9785 0.9785 0.7664
100 0.4728 0.9896 0.9945 0.9954 0.6142 0.9934 0.9898 0.9893 0.6069

max 10 1.0000 1.0000 0.9968 0.9993 0.9999 0.9771 0.9771 0.9771 0.9771P
C

i

20 0.9600 0.9935 0.9911 0.9969 0.9955 0.9749 0.9741 0.9745 0.9748
50 0.8496 0.9856 0.9921 0.9970 0.9543 0.9836 0.9814 0.9822 0.9604
100 0.8154 0.9653 0.9711 0.9943 0.8796 0.9902 0.9660 0.9735 0.8971

References

Artigues C., Billaut J.C., Cheref A., Mebarki N., Yahouni Z., 2016, “Robust Machine Scheduling
Based on Group of Permutable Jobs”, in Doumpos M., Zopounidis C., Grigoroudis E. (Eds)
Robustness analysis in decision aiding Optimization, and Analytics, pp.191-220, Springer.

Kouvelis P., Yu G/, 1997, “Robust Discrete Optimization and Its Applications”, Springer.

A relaxation-based generation scheme for the
RCPSP/max,π

Mareike Karnebogen and Jürgen Zimmermann

Clausthal University of Technology, Germany
mareike.karnebogen@tu-clausthal.de, juergen.zimmermann@tu-clausthal.de

Keywords: project scheduling, partially renewable resources, generation scheme

1 Introduction

In the context of project scheduling, alternative resource types like partially renew-
able resources, which were first mentioned by Böttcher et al. (1999), gain more and more
relevance. Partially renewable resources are characterized by the fact that they are only
required by an activity, if its execution takes place in a defined set of periods, whereas for
the complementary set of periods no resource consumption applies. Hence, partially re-
newable resources constitute a generalized form of renewable and non-renewable resources
and, e.g. allow to model special working time restrictions like weekend working arrange-
ments. In this paper, the resource-constrained project scheduling problem with partially
renewable resources and time windows (RCPSP/max,π) is considered. As a generaliza-
tion of the RCPSP/π it is hard to solve (N P-hard in the strong sense). Thus we present
a relaxation-based generation scheme, which finds good feasible solutions within a short
amount of time. In Section 2 a problem description and a corresponding mixed-integer
linear formulation (MILP) is given. Section 3 addresses the developed generation scheme.
Finally, in Section 4 a preliminary performance analysis is presented.

2 Problem description

Within the RCPSP/max,π, the underlying project is given by an activity-on-node net-
work G = (V, E, δij) with minimim and maximum start-start-time lags. Each activity
i ∈ V = {0, 1, . . . , n + 1} has a deterministic processing time pi ∈ Z≥0 and can not
be interrupted during its execution. Furthermore, a maximal project duration d̄ is given,
which is observed by a time lag δn+1,0 = −d̄ between the end and the start of the project.
Let dij be the longest distance from node i ∈ V to node j ∈ V in the project network
and ESi = d0i(LSi = −di0) the earliest (latest) start time of activity i ∈ V , respec-
tively. Then, the set of all integer time-feasible start time points of activity i results in
Ti = {ESi, ESi + 1, ..., LSi}.

In addition to time restrictions, a set of partially renewable resources R = {1, . . . , m}
is given. To each of those resources k ∈ R a set Πk ⊆ {1, 2, . . . , d̄} of not necessarily
connected periods of the planing horizon is assigned. For all time periods contained in
Πk it is assumed that the capacity of the resource is in total restricted to Rk, whereas in
periods not contained in Πk the resource k is not available. In addition, it is supposed, that
activity i ∈ V only consumes rik units of resource k ∈ R per time period contained in Πk

and thus the execution of activity i is not linked to the resource availability as shown in the
following example: Assuming there are two employees (k = 1, 2) who can take on an all-day
task i (ri1 = ri2 = 1) on any day of the week. Employee 1 is available Monday and Tuesday
(Π1 = {1, 2}), employee 2 the remaining three days of the working week (Π2 = {3, 4, 5}).
Task i can then be carried out on all 5 days, but - depending on how it is scheduled - it
is done either by employee 1 (start time Si ∈ {1, 2}) or by employee 2 (Si ∈ {3, 4, 5}).

Consequently, the composite resource consumption of activity i of resource k depends on
the number of periods t ∈ Πk during those the activity is executed and can be calculated
by rc

ik(Si) = |{Si + 1, Si + 2, . . . , Si + pi} ∩ Πk| · rik (Watermeyer and Zimmermann 2020).
The objective of the RCPSP/max,π is to find a schedule S = (S0, S1, . . . , Sn+1) mini-

mizing the project duration Sn+1 and simultaneously complies with all time and resource
restrictions. The time restrictions are met if Sj − Si ≥ δij ∀ ⟨i, j⟩ ∈ E, whereas the re-
source restrictions are observed if the accumulated resource demand of all capacitated
periods t ∈ Πk not exceeds Rk for any partially renewable resource k ∈ R. So formally, the
RCPSP/max,π can be stated as follows:

Minimize f(S) = Sn+1

subject to Sj − Si ≥ δij (⟨i, j⟩ ∈ E)

S0 = 0
∑

i∈V
rc

ik(Si) ≤ Rk (k ∈ R)

Si ∈ Z≥0 (i ∈ V)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(RCPSP/max,π)

3 Generation scheme

The basic principle of our generation scheme is starting with the ES-Schedule gradually
resolving resource conflicts until we obtain a time- and resource-feasible schedule. Thereby,
the resource relaxation of the RCPSP/max,π is used, which, according to Watermeyer and
Zimmermann (2020), can be formulated as follows:

Minimize f(S) = Sn+1

subject to Sj − Si ≥ δij (⟨i, j⟩ ∈ E)

Si ∈ Wi (i ∈ V)

⎫

⎪

⎬

⎪

⎭

(RCPSP/max,πrelax)

Vector W = (Wi)i∈V describes start time restrictions for the project activities i ∈ V with
Wi ⊆ {0, 1, ..., d̄} for all i ∈ V \ 0 and W0 = {0}. For the resource relaxation, Wi := Ti

for all i ∈ V applies. In the following, ST (W) describes the feasible area of problem
RCPSP/max,πrelax, and ES(W) is the unique minimal point of this space, which exists
unless ST (W)=∅ and can be determined as shown in Watermeyer and Zimmermann (2020).

Algorithm 1 shows our generation scheme. In the initialization process for each activity
i ∈ V the composite resource demand rc

ik(t) according to t ∈ Ti for each partially renewable
resource k ∈ R and the minimal composite demand rmin

ik are calculated. Afterwards, for
each activity i ∈ V a set of all potential start times Wi is established containing all points
in time t ∈ Ti, omitting those who are certainly known to be resource-unfeasible. Based on
Wi, the maximal composite demand rmax

ik is computed. Furthermore, a counter u is set to
zero and a tabu list Θk for each resource k ∈ R are initialized.

In the main step, which is just performed if a time-feasible schedule exists, i.e. ST ̸= ∅,
and if the minimum possible resource requirement rmin

ik of all activities i ∈ V in total does
not exceed the capacity Rk for any resource k ∈ R, first Schedule S is set to the unique
minimalpoint ES(W). Then, the set of resources is determined for which a resource conflict
exists, i.e. the total resource consumption exceeds the given capacity. If this set is empty,
schedule S is both time- and resource-feasible and the algorithm terminates. Otherwise,
one of the conflict resources k∗ ∈ Rconflict is selected based on a certain priority rule. In the
next step, all activities i ∈ V , whose resource consumption of resource k∗ can be reduced,
are determined to evaluate potential candidates to resolve the chosen resource conflict. If
there is no such activity, i.e. if the set V pot is empty, a so-called reverse step is carried out.
Otherwise, an activity i∗ ∈ V pot is selected priority rule-based and its maximal composite

Algorithm 1 Generation Scheme
1: rc

ik∗ (t) := |{t + 1, t + 2, . . . , t + pi} ∩ Πk| · rik for all i ∈ V , k ∈ R and t ∈ Ti

2: rmin
ik := mint∈Ti

rc
ik∗ (t) for all i ∈ V and k ∈ R

3: Wi := {t ∈ Ti|rc
ik(t) ≤ Rk −

∑

j∈V \i
rmin

ik for all k ∈ K} for all i ∈ V

4: rmax
ik := maxt∈Wi

rc
ik∗ (t) for all i ∈ V and k ∈ R

5: rLB
ik := rmin

ik , rUB
ik := rmax

ik

6: u := 0, Θk = ∅ for all k ∈ R

7: if ST (W) = ∅ then terminate
8: while true do

9: S := ES(W)
10: Rconflict := {k ∈ R|

∑

i∈V
rc

ik∗ (Si) > Rk}

11: if Rconflict = ∅ then break
12: else

13: priority based choice of resource k∗ ∈ Rconflict

14: V pot := {i ∈ V |rc
ik∗ (Si) > 0 ∧ rc

ik∗ (Si) − rLB
ik∗ > 0 ∧ i ̸∈ Θk∗ }

15: if V pot = ∅ then u := u + 1 and Reverse Step

16: else

17: priority based choice of activity i∗ ∈ Ipot

18: rUB
i∗k∗ := rc

i∗k∗ (Si∗) − ri∗k∗

19: for t ∈ Wi do

20: if rc
i∗k∗ (t) > rUB

i∗k∗ then Wi := Wi \ {t}

21: if ST (W) = ∅ then

22: rUB
i∗k∗ := rc

i∗k∗ (Si∗)
23: Θk∗ := Θk∗ ∪ {i∗}
24: else

25: update Wi, rmin
ik and rmax

ik for all i ∈ V and k ∈ R
26: return S

resource consumption is set to rc
i∗k∗(Si∗)−ri∗k∗ . This additional restriction on the resource

consumption of activity i∗ is now converted into a start time restriction, i.e. all point in
times t ∈ Wi∗ for which ri∗k∗(t) > rUB

i∗k∗ applies are removed from Wi∗ . Then, it is verified
whether a feasible solution for RCPSP/max,πrelax still exists due to this additional start
time restriction. If not, the restriction is undone and activity i∗ is added to the tabu list
of resource k∗, i.e. i∗ cannot be selected for the next time to resolve the resource conflict
of k∗. Otherwise, Wi, rmin

ik and rmax
ik are updated for all i ∈ V and k ∈ R. The main step

is repeated until a both time- and resource-feasible schedule has been determined or the
algorithm terminates in the course of the reverse step.

The reverse step is executed if there is no possible operation to resolve the selected
resource conflict, which means ST (W) no longer contains a resource-feasible schedule. In
case u is higher than a given number of reverse steps û the generation scheme terminates,
i.e. no feasible schedule could be found. Otherwise, start time restrictions or decisions
made in previous iterations, which ensure that currently existing resource conflicts arise
or cannot be resolved, are undone. In a first step, the tabu list Θk∗ is cleared. Thereafter,
due to the fact that the wrong start time restrictions can not clearly be determined, four
different strategies were examined:

1. a random number of the last decisions made is reversed (σ = 1).
2. return to the initial state (Wi = Ti for all i ∈ V) (σ = 2).
3. Wi is reset for activities i ∈ V , which are potentially candidates to solve the resource
conflict, i.e. rik∗(Si) − rLB

ik∗ > 0 (σ = 3).
4. for potentially candidates it examined whether binding time or resource constraints
are the reason why their resource consumption of k∗ cannot be reduced and the start
time restrictions of the corresponding activity i and/or other activities are reset (σ = 4).

Finally, Wi, rmin
ik and rmax

ik are updated for all activities i ∈ V and resources k ∈ R.

4 Performance analysis

Our generation scheme was coded in C++. For the choice of resource k∗ the priority
rules RDd (maximal total "Resource Demand dynamic" first) and ROd (maximal "resource
capacity overrun dynamic" first) were tested, whereas for the activity selection the rule
TFd was used. For the reverse step the four strategies mentioned above were examined. To
evaluate the generation scheme, non-trivial instances with n ∈ {20, 50, 100} and m = 30
from the instance set established by Watermeyer and Zimmermann (2020) were solved.
Table 1 shows our results compared to results of the construction-based generation scheme
of Karnebogen and Zimmermann (2021) as well as to results obtained by the mixed-integer
linear programming solver IBM ® ILOG ® CPLEX ® 12.8.0 applied on the MIP model of
Watermeyer and Zimmermann (2020) with a runtimelimit of one hour. All runs were done
on an Intel Core i7-7700K CPU with 4.2 GHz and 64 GB RAM under Windows 10. Dis-
played are the percentage of instances (%feas), for which our generation scheme was able
to find feasible solutions, the average percentage gap (%Gap) referred to the best lower
bound of the MIP found in at most 3.600 seconds and the average computing time (∅CPU)
in seconds required for 100 runs with û = 100.

Table 1. Preliminary results of the computational study

RDd ROd GSconstr CPLEX

σ = 1 σ = 2 σ = 3 σ = 4 σ = 1 σ = 2 σ = 3 σ = 4

%feas 93.98 93.63 95.35 95.87 93.29 93.46 95.52 96.04 98.45 100.00

UBO20π %Gap 8.62 7.27 6.49 6.63 8.59 7.10 6.51 6.86 5.42 0.46

∅CPU 1.71 4.59 2.95 3.17 2.34 5.10 3.22 3.43 3.19 143.55

%feas 91.04 92.23 93.23 92.63 91.63 92.63 93.43 92.83 96.81 96.81

UBO50π %Gap 36.35 33.19 33.79 33.19 36.01 32.72 33.52 32.95 33.75 12.88

∅CPU 16.90 53.42 21.70 23.42 19.15 67.58 23.87 25.53 30.85 2175.01

%feas 95.82 96.24 96.45 96.66 96.03 96.66 97.08 97.08 97.08 63.26

UBO100π %Gap 87.17 83.41 85.63 85.08 87.14 81.88 85.10 84.73 85.83 86.06

∅CPU 165.96 257.95 201.90 214.08 177.09 274.04 220.35 230.37 112.50 2985.09

The results show that our generation scheme is able to generate feasible solutions for
most tested instances. For small instances (UBO20π and UBO50π) the MIP-Solver out-
performs both generation schemes, even though the run-time increases drastically. For the
bigger instances (UBO100π), which are more relevant in practice, the generation schemes
are able to find way more feasible and slightly better solutions in under four minutes than
the MIP in one hour. For these instances, the combination of the resource selection rule
ROd and reverse strategy σ = 2 performs best.

References

Böttcher J., A. Drexl, R. Kolisch and F. Salewski, 1999, “Project scheduling under partially renewable resource
constraints”, Management Science, Vol. 45, pp. 543-559.

Karnebogen M. and J. Zimmermann, 2021, “A Generation Scheme for the Resource-Constrained Project Schedul-
ing Problem with Partially Renewable Resources and Time Windows”, Book of Extended Abstracts of 17th
International Conference on Project Management and Scheduling, Toulouse, pp. 195-198.

Neumann K., C. Schwindt, and J. Zimmermann, 2003, “Project scheduling with Time Windows and Scarce
Resources”, 2nd ed., Springer, Berlin.

Watermeyer K. and J. Zimmermann, 2020, “A branch-and-bound procedure for the resource-constrained project
scheduling problem with partially renewable resources and general temporal constraints”, OR Spectrum,
Vol. 42, pp. 427-460.

1 1

X

X

h

th

h

h

th

X

X d

X

d n�d

X

h

th

h

X

X

h

th

h

h

th

d

d

TP

d TP

bs 2 [bmin, bmax]

TP

bmin bmax

n m

RDI

i

=
TCIT

im

� TCIT

imin

TCIT

imax

� TCIT

imin

TCIT

im

i m TCIT

imax

i TCIT

imin

X X = n

n n  200 X = 1
n m

d = 4 TP = 0.4 bs 2 [bmin = 2, bmax = 5] TP = 0.4
bs 2 [bmin = 2, bmax = 5]

n · m · 30

n

n = 500

n m n m

1

Just-In-Time Flexible Job Shop with Stochastic

Processing Times

Camilo Rodríguez-Espinosa1, Eliana González-Neira1

Pontificia Universidad Javeriana, Bogotá, Colombia
camiloa.rodriguez@javeriana.edu.co, eliana.gonzalez@javeriana.edu.co

Keywords: Stochastic flexible job shop, Simheuristic, Earliness, Tardiness, Robustness.

1 Introduction

In a Flexible Job Shop (FJS) environment, each job has a particular process path that
must be completed and, for each process, different machines can perform the task(Pinedo;
2016). This problem exists in many important industries such as textile manufacturing,
chemical material processing, aeronautical, semiconductor manufacturing, steelmaking,
among others. Due to its combinatorial nature, the FJS is classified as NP-Hard (Demir
and İşleyen; 2013; Yang et al.; 2020).

One important aspect to improve customer service level, is the consideration of
Just-In-Time (JIT) philosophy (Kong et al.; 2017). This philosophy involves, traditionally,
not finishing jobs too early, generating inventory handling costs, and not delivering jobs
too late, incurring in penalties with the clients. That is why earliness and tardiness
objectives are included as objective functions.

Another key element to consider, is the presence of uncertainties in manufacturing
operations. That is why in this project the processing times of the jobs are modeled as
random variables. This work uses the predictive approach in which both stochastic and
robust modeling are implemented simultaneously. On the one hand, the processing times
are modeled through lognormal probability distributions, and a simheuristic method
is implemented to solve the problem (Juan et al.; 2015). On the other hand, a robust
measure is included as one of the objective functions, ensuring that the predictive schedule
does not differ excessively from the realized schedule.

Based on Wu et al. (2020), the objectives to be analyzed are: i) the predictive
Earliness+Tardiness (ET), considering deterministic processing times; and ii) the Ear-
liness+Tardiness Risk which is the expected delay of the realized Earliness+Tardiness
(ETR), considering stochastic processing times. Mathematically it can be defined as in
equation (1):

Earliness+Tardiness Risk (ET Risk) = E[max(ETR � ET, 0)] (1)

Taking into account the above elements, this paper solves a stochastic FJS prob-
lem, with lognormal processing times, to obtain the Pareto frontier of predictive
Earliness+Tardiness and Earliness+Tardiness Risk. To solve the problem a NSGA-II
simheuristic is proposed. The NSGA-II is characterized by its low computational require-
ments, elitist approach, and parameter-less sharing approach to improve solutions at
different applications (Deb et al.; 2002).

2

The rest of the abstract is organized as follows. The next section presents the proposed
simheuristic. The computational experiments and results of the simheuristic performance
will be reported in Section 3.

2 Proposed NSGA-II simheuristic

This section describes the proposed simheuristic. Bearing in mind the main elements
of the NSGA-II, the principles of a simheuristic (Juan et al.; 2015) and the characteristics
of the problem, the following aspects are going to be explained: chromosome definition,
initial population, order and selection, crossover operator, mutation operator and Monte
Carlo simulation.

Chromosome definition: Based on Sun et al. (2019), the coding used for this problem is
a real number between [0, Mij) for each operation of each job, being Mij the total number
of machines that can process the j-th operation of job i. The integer part of the number
represents the selected machine to process the job. For example if machines 3, 4 and 7 can
process the job and the integer part is 1 (considering 0 as the first position) the machine 4 is
selected. The fractional part of the number provides the priority of the job in this operation.

Initial population: For the initial population, some solutions were generated with
the application of six dispatching rules, taking the expected values of processing times
and adapting them for the FSJ problem. The rules selected were Earliest Due Date
(EDD), Shortest Processing Time (SPT), Longest Processing Time (LPT), Critical Ratio
(CR), Average Processing time per Operation (AVPRO), and Slack per Remaining Oper-
ations (S/OR). The remaining solutions of the initial population were generated at random.

Order and selection: After the initial population is generated, there is a group of
N chromosomes. This group will be classified in Pareto frontiers, according to the fast
non-dominated sorting procedure and crowding distance. Once the chromosomes are
ordered, a pair of chromosomes are selected randomly to apply the crossover operator,
until Q offspring are obtained. As a result, a population with size N+Q is obtained. Then
the chromosomes of the population are rearranged with the same criteria, and the first N
chromosomes are saved. The previous process will be repeated until the maximum number
of generations is reached or the running time of the algorithm is ended.

Crossover operator : A random number between 0 and 1 is generated for each position
of the chromosome, which defines how the crossover will be performed to create an
offspring chromosome. When the random number is less than the crossover probability,
the offspring takes the value of the parent's gene in this position. Otherwise, it takes the
value of the mother's gene in this position.

Mutation operator : For each offspring, a random number between 0 and 1 is generated
to determine if the mutation mutation operator is applied or not to that chromosome.
The mutation consists of choosing one job of the chromosome and reversing the order of
the fractional values of the operations.

Monte Carlo simulation: Each of the chromosomes generated through the NSGA-II, is
simulated through a Monte Carlo simulation to calculate the Earliness+Tardiness Risk,
by using a lognormal distribution.

3

3 Computational experiments

This section presents the computational experiments carried out to evaluate the
performance of the proposed simheuristic in comparison with the simulation of solutions
given by six dispatching rules. Besides, the behavior of the objective functions is analyzed
under different coefficients of variation of the log-normal distribution.

A total of 66 instances from Brandimarte (1993) and Hurink et al. (1994) were
evaluated. Considering that these instances do not have a due time window for each job,
they were created randomly.

Each instance was run two times with the simheuristic under four different coefficients of
variation of processing times (0.25, 0.50, 0.75, 1.00), for a total of 528 Pareto Frontiers. The
best value of each objective function obtained in each Pareto Frontier was compared with
the simulation of the solutions given by the six mentioned dispatching rules under the same
coefficients of variation. Thence, the percentage improvement given by the simheuristic was
measured (see equation 2).

Improvement =
ObjectiveFunctionDispatchinghRule �ObjectiveFunctionBest

ObjectiveFunctionDispatchingRule
(2)

Table 1 presents the average percentage improvement given by the simheuristic in com-
parison with the six mentioned dispatching rules.

Table 1. Average percentage improvement of each objective function in comparison with dispatch-
ing rules.

Dispatching rule ET (%) ET Risk (%)

EDD 74.01 47.28
SPT 80.13 50.76
LPT 86.83 58.82
CR 71.52 60.88
AVPRO 80.95 48.99
S/RO 55.67 55.82

A non-parametric MANOVA was executed to evaluate the effect of different coefficients
of variation in both objective functions. In Table 2 the p-values of MANOVA are presented.

Table 2. Non-parametric MANOVA for the objective functions with different coefficients of vari-
ation.

Factor ET ET Risk

Instance 0.001 0.001
Coefficient of variation 0.039 0.001
Instance*Coefficient of variation 0.029 0.001

According to the results obtained, the coefficient of variation has a significant effect
on the two objective functions. The averages and standard deviations of both objectives

are shown in Table 3. It can be observed that, as the coefficient of variation increases the
Earliness+Tardiness Risk also augment whereas the Earliness+Tardiness is stable. These
tests allow us to emphasize the importance of studying randomness when uncertainties are
present. Also, it is essential to make an accurate probability distribution fitting to obtain
adequate results.

Table 3. Behavior of the objective functions according to the coefficient of variation.

C.V ET AVG ET SD ET Risk AVG ET Risk SD

0.25 739.58 1313.95 91.34 161.18
0.50 748.05 1299.17 355.41 503.72
0.75 766.67 1313.77 926.51 1039.34
1.00 763.46 1295.01 1757.87 1676.89

For future research, it is recommended to analyze the behavior of other probability
distributions and the addition of other stochastic parameters in the model. Finally, we
recommend to evaluate this problem with other simheuristic modeling to observe any
variation in the results of the objective functions.

Bibliography

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search,
Annals of Operations Research 41: 157–183.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). A fast and elitist multiob-
jective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation
6(2): 182–197.

Demir, Y. and İşleyen, S. K. (2013). Evaluation of mathematical models for flexible job-
shop scheduling problems, Applied Mathematical Modelling 37(3): 977–988.

Hurink, J., Jurisch, B. and Thole, M. (1994). Tabu search for the job-shop scheduling
problem with multi-purpose machines, OR Spektrum 15: 205–215.

Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M. and Figueira, G. (2015). A review of
simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimiza-
tion problems, Operations Research Perspectives 2: 62–72.

Kong, L., Li, H., Luo, H., Ding, L., Luo, X. and Skitmore, M. (2017). Optimal single-
machine batch scheduling for the manufacture, transportation and JIT assembly of pre-
cast construction with changeover costs within due dates, Automation in Construction
81: 34–43.

Pinedo, M. L. (2016). Scheduling, 5th edition edn, Springer International Publishing.
Sun, L., Lin, L., Li, H. and Gen, M. (2019). Cooperative co-evolution algorithm with an

MRF-based decomposition strategy for stochastic flexible job shop scheduling, Mathe-
matics 7.

Wu, Z., Sun, S. and Yu, S. (2020). Optimizing makespan and stability risks in job shop
scheduling, Computers and Operations Research 122: 104963.

Yang, Y., Huang, M., Wang, Z. Y. and Zhu, Q. B. (2020). Robust scheduling based
on extreme learning machine for bi-objective flexible job-shop problems with machine
breakdowns, Expert Systems with Applications 158: 113545.

n = 4 V = {1, . . . , 4}
k = 1

k = 2
0 5

i 2 V Mi = {1, 2}

(i, j) i

j

pim ri1m

ri2m i 2 V m 2 {1, 2}
R1 = 3 R2 = 8

(p
i1, ri11, ri21)

(p
i2, ri12, ri22)

(p
j1, rj11, rj21)

(p
j2, rj12, rj22) r1(t) i (m)

1 2 3 4 5

1

2

R1 = 3

Si

i 2 V [{n+1} xim

i 2 V m 2 Mi

i, j 2 V [{n + 1}, i 6= j

yij i

j

zij i

j

z12 z21 y

z43 = 0

z34 = 1 y34 = 0

z13 y13 z31 y31

z13 = 1
y13 = 1

r1(t)

1 2 3 4

1

2

3

S5 = 5

S1=0
x11=0
x12=1

S2=0
x21=1
x22=0

S3=2
x31=0
x32=1

S4=3
x41=1
x42=0

z13 = y13 = 1

z31 = y31 = 0

z21 = 1
y21 = 0

z12 = 1
y12 = 0

z24 = y24 = 1

z42 = y42 = 0

z34 = 1
y34 = 0

z43 = 0
y43 = 0

1

Aggregation techniques for scheduling on

parallel machines in semiconductor

manufacturing

Jérémy Berthier1,2, Stéphane Dauzère-Pérès1, Claude Yugma1, Alexandre Lima2

1 École des Mines Saint-Étienne, UMR 6158 LIMOS, CMP, Department of Manufacturing
Sciences and Logistics, Gardanne, France

j.berthier@emse.fr, dauzere-peres@emse.fr, yugma@emse.fr

2 STMicroelectronics Crolles, Department of Decisional Solutions, Team of Full Automation and
Simulation, Crolles, France

jeremy.berthier@st.com, alexandre.lima@st.com

Keywords: Parallel machines, aggregation techniques, semiconductor manufacturing.

1 Introduction

Semiconductor manufacturing includes the most complex manufacturing processes.
Mönch et al. (2011) and Mönch et al. (2012) showed that the performances of the in-
dustry highly rely the effective scheduling of semiconductor wafer fabrication facilities.
Scheduling problems to be addressed at the operational level involve a rich set of con-
straints and criteria. As a result, optimization algorithms are increasingly preferred over
dispatching rules, in particular in complex production areas such as the photolithography
area considered in this paper.

2 Problem description

The scheduling problem in the photolithography area consists in scheduling a set of jobs
on a set of parallel photolithography machines. Each job requires an additional resource,
called reticle or mask, that can be transported from one machine to another. Various
papers in the literature have studied different version of this problem, and have presented
mathematical models and heuristics. For example, Mönch et al. (2002) propose a genetic
algorithm to solve the photolithography scheduling problem while considering send-ahead
wafers. A recent short overview of the literature can be found in Bitar et al. (2021).

The characteristics of the problem are summarized below.

Jobs Each job needs to be processed with a given priority. Few jobs have precedence
constraints (at most two operations, and the problem is not formally considered to be a
flexible job-shop scheduling problem), and must not exceed a maximum time lag. Engaged
maximum time lag constraints when starting the schedule are modelled by assigning a
deadline to each job.

Photolithography machines Each photolithography machine is qualified to process a
limited subset of the jobs. Machines can only process one job at time, and may not be
available before a certain date. The processing of a job on a machine cannot be interrupted
(no preemption), and processing times depend on both the job and the machine. Finally, a
machine-dependent and sequence-dependent setup time is required to start the processing
of a job.

2

Reticles Each job requires one reticle, which is available in a single copy. Jobs are as-
sumed to have a competitive access to reticles (otherwise, considering them would be
trivial). Besides, transporting a reticle between two machines takes a transportation time
that depends on the location of the machines.

3 Multi-objective scheduling

The scheduling problem is addressed through an Integer Linear Programming (ILP)
model which relies on Bitar et al. (2016) and Bitar (2021). The scheduling horizon is
divided into periods of equal duration. A feasible solution is represented by binary decision
variables associated with each triplet (job, machine, period). Several linear constraints are
defined in order to model operations within the photolithography area. Moreover, all jobs
must be scheduled before the end of the time horizon.

Several objective functions are defined based on the factory requirements. All the cri-
teria must be considered in the optimization problem, which makes it multi-objective.
Overall, three categories of criteria are studied:

– Criteria implementing relaxed operational constraints, such as the minimization of a
total risk function associated with the maximum time lag constraints and deadlines;

– Criteria to meet production targets of the manufacturing area:
– Minimize the sum of the completion times of jobs,
– Maximize the number of jobs scheduled before a certain time threshold;

– Criteria to improve the operational efficiency:
– Minimize the total setup time of machines,
– Minimize the number of reticle moves.

In the following, only the minimization of the sum of of the completion times of jobs is
considered to compare the aggregation methods presented in the next section.

4 Aggregation methods

The ILP problem discussed in Section 3 is intractable for large instances (see Section
5.1) when the scheduling horizon is discretized in minutes. To improve its efficiency, we
propose to reduce the problem size using two aggregation methods. Section 4.1 presents a
method that batches (or combines) multiple jobs using the same reticle to create a single
job. In Section 4.2, the use of larger periods (time steps) than one minute when discretizing
the scheduling horizon is proposed.

4.1 Batching similar jobs

The first method consists in batching similar jobs, i.e. combining multiple jobs using the
same reticle as one single job. Indeed, jobs with the same reticle belong to the same setup
group, which means that no setup time is required between these jobs. Moreover, batching
jobs helps to generate more acceptable solutions from a practical point of view, in particular
by avoiding unnecessary mask changes on the same machine and reticle transportation
between machines.

Jobs in the same batch are selected such that:
– They are not involved in a precedence relationship;
– They are not in-process;
– No setup times are required between any sequence of the jobs;
– They have at least one common qualification, which means that \j2bMj 6= ;.

3

In a batch, jobs are ordered using Smith’s rule applied to the average total process-
ing time of the batch over qualified machines, i.e. by ascending order of the criterionP

\j2bMj
pj,m

!j ·|\j2bMj | . In the optimization model, each batch b becomes a new job whose priority
is !b maxj2b !b.

4.2 Increasing the time step

The second method consists in increasing the discretization period, or time step. This
method is motivated by the small dispersion of the processing times in the photolithography
area, contrary to academic instances where ranges are generally much larger. Besides, the
realized processing times are in practice often different than the scheduled ones (since
average processing times are used) because of the uncertainty in the production processes.

If � denotes the time step, any time-related parameter ↵t is modified as follows: ↵t
↵t
� . Since decision variables are time-indexed, this results in dividing the number of decision
variables by �. The resulting schedule is adjusted in a post-processing algorithm that uses
the initial value of ↵t.

5 Numerical results

These experiments have been conducted with 5 industrial instances derived from one of
the photolithography areas of STMicroelectronics, that comprises about 23 machines and
less than 80 reticles. All the experiments are conducted using IBM ILOG CPLEX 12.9.

5.1 Computational results

As shown in Table 1, solution time of the ILP model grows very fast with the number
of jobs to be scheduled. For example, up to 1,000,000 binary decision variables can be
generated. Such computational times are not tractable since jobs must be scheduled in real
time. This motivated the development of the two aggregation methods tested hereinafter.

Table 1. Solution time as a function of the number of jobs

Number of jobs 40 45 60 70 90 120
Min solution time [in s] 0.2 3 9 27 102 7,365

Average solution time [in s] 0.7 14 18 60 1,376 7,415
Max solution time [in s] 1.4 41 31 172 5,743 7,488

5.2 Aggregation methods

Both methods show promising results for small and medium size instances, as illustrated
in Tables 2 and 3. Regarding the method in Section 4.1, few jobs (around 16) are batched
because more than half of the reticles are required by exactly one job. Nevertheless, the
serial batching of jobs generates a significant time saving (56.8% on average) while keeping
a reasonable gap to the optimal objective function (1.5% on average). Although the gap
to an optimal solution is sparsely dispersed, time savings have a larger range (from 99% to
-2%) that depends on the number of batches and their sizes.

4

Table 2. Average solution time saving and optimality gap with batched jobs

Instance Nb of batches Average batch size Time saving Gap

A (84 jobs) 7 2.5 jobs 35% 0.5%
B (82 jobs) 6 3 jobs 99% 2%
C (92 jobs) 6 3.5 jobs 76% 2%
D (87 jobs) 3 3 jobs -2% 1%
E (87 jobs) 5 3.4 jobs 78% 2%

Average (86.4 jobs) 5.4 3.08 jobs 56.8% 1.5%

For the sake of the experiments, the time discretization is adjusted with two values: the
minimum and maximum processing times on machines (5 min and 15 min, respectively).
As expected, when the time step is increased, the gap to the optimal slightly deteriorates
(from 0.6% to 2.3%) but the time saving is improved and (from 99.6% to 98.1%). Contrary
to to the first method, the time saving is better controlled but not the optimality gap,
which is a little more scattered.

Table 3. Average solution time saving and optimality gap for time step increase

Instance � = maxj,m {pj,m} ⇡ 15 min � = minj,m {pj,m} ⇡ 5 min
Time saving Gap Time saving Gap

A (84 jobs) 99.8% 4.3% 99.1% 0.4%
B (82 jobs) 99.9% 4.1% 99.8% 0.7%
C (92 jobs) 99.3% 0.9% 97.3% 0.3%
D (87 jobs) 99.1% 1.5% 95.6% 1.3%
E (87 jobs) 99.7% 0.6% 98.6% 0.3%

Average (86.4 jobs) 99.6% 2.3% 98.1% 0.6%

6 Conclusions

Two aggregation methods were presented to solve a scheduling problem on parallel
machines in semiconductor manufacturing. Numerical results on industrial instances were
conducted using an advanced ILP model (that will be presented in detail at the confer-
ence). The aggregation methods are motivated by the industrial requirements and specific
features of the problem, and show promising results that will be used to improved the
multi-objective optimization of the problem.

References

Bitar A., Dauzère-Pérès S., and Yugma C. (2021). Unrelated parallel machine scheduling with new
criteria : Complexity and models. Computers Operations Research, page 105291, 2021.

Bitar A., Dauzère-Pérès S., Yugma C., and Roussel R. A Memetic Algorithm to Solve an Unrelated
Parallel Machine Scheduling Problem with Auxiliary Resources in Semiconductor Manufactur-
ing. Journal of Scheduling, 19(4): 367-376, 2016.

Mönch, L. (2002). A genetic algorithm heuristic applied to stepper scheduling. In Proceedings
of the International Conference on Modelling and Analysis of Semiconductor Manufacturing,
Tempe, USA, (pp. 276-281).

Mönch L., Fowler J. W., Dauzère-Pérès S., Mason, S. J., and Rose O.(2011). A survey of prob-
lems, solution techniques, and future challenges in scheduling semiconductor manufacturing
operations. Journal of Scheduling, 14(6), 583-599.

Mönch L., Fowler J. W., and Mason S. J. (2012). Production planning and control for semicon-
ductor wafer fabrication facilities: Modeling, analysis, and systems. New York: Springer.

1

New empirical and artificial data instances for the

multi-skilled resource-constrained project scheduling

problem: data generation and implementation

Jakob Snauwaert1, Mario Vanhoucke1,2,3

1 Faculty of Economics and Business Administration, Ghent University, Belgium
jakob.snauwaert@ugent.be mario.vanhoucke@ugent.be

2 Operations and Technology Management Centre, Vlerick Business School, Belgium
3 UCL School of Management, University College London, United Kingdom

Keywords: Project Management, Resource-Constrained Project Scheduling, Multi-skilled
Resource Assignment.

1 Introduction

In recent years, organizations have been driven by a combined effort of trying to execute
cost-efficient processes while allowing for customer specific request to individualize the final
product design (Gutjahr, et al. 2010). This operational trade-off induced a requirement for
highly efficient as well as flexible workers in current organizations (Riley, et al. 2017). As
such, today’s workers need not only be productive, they also need to be able to handle a
substantial amount of different jobs and to agree with having very dynamic job descriptions.
A direct consequence from this is that current workforces consist of a set of complementary
multi-skilled resources that are capable of executing as many different projects as possible
(Nembhard and Uzumeri 2000). This fixated vision on skills and competences is especially
important because it is less likely or improbable that these skills and competences can
be duplicated or imitated, which yields an important advantage over other competitive
organizations. Consequently, investments in development and training of human resources,
with improved results in mind, are a critical part of people management and of the project’s
success (Riley, et al. 2017).

The research that will be presented in this abstract revolves around project schedul-
ing with resource constraints, more specifically, it focuses on resources as human beings
and how they can be employed optimally in a project. It deals with the efficiency and
involvement of skills in projects and on the integration of multi-skilled teams. The main
focus lies on the multi-skilled resource-constrained project scheduling problem, further ab-
breviated as MSRCPSP, which is an activity scheduling and resource assignment problem
with resources who master several different skills. This problem is an extension of the
resource-constrained project scheduling problem (RCPSP), which is proven to be NP-hard
(Blazewicz, et al. 1983). Overviews of the research on the RCPSP and its extensions can
be found in Hartmann, et al. (2010) and Hartmann, et al. (2021). There are two main
differences between the RCPSP and the MSRCPSP. Firstly, the resource requirements are
now skill requirements, which means that activities do not only require a certain number of
resources to be executed, but these multi-skilled resources also need to have an appropriate
set of skills to be able to perform the jobs specified by the activity. Secondly, each resource
is considered to be an individual human being that masters a certain set of skills instead
of a uniform resource. Consequently, this means that the multi-skilled resources can not
work on every activity in the project and the resource assignment subproblem becomes
more difficult to solve. Finally, the goal of the MSRCPSP is to construct feasible activity
schedules and feasible multi-skilled resource assignments that minimises, in most cases, the
project makespan.

2

In the last two decades, the number of research articles on the MSRCPSP has increased
substantially. Néron (2002) was the first to introduce resources that were characterized
by skillsets into the RCPSP. In the years after this publication, multiple heuristic and
exact solutions methods were presented for the MSRCPSP by, among others, Bellenguez
and Néron (2007) and Correia, et al. (2012). More recently, a considerable growth in the
number of research papers studying the MSRCPSP has occurred, most of which proposed
a metaheuristic approach (Almeida, et al. (2018), Zabihi, et al. (2019) and Snauwaert
and Vanhoucke (2021)). An extensive overview of scheduling problems with multi-skilled
resources is addressed by Afshar-Nadjafi, B. (2020).

2 Problem Definition

In the MSRCPSP, a project can be represented by an acyclic activity-on-the-node
network G = (N,A), in which the minimum precedence relationships with a time-lag of
zero are characterised by the arc set A and the activities by the node set N . The project
consists of |N | � 2 real activities and two additional dummy activities that represent the
start and the end of the project. We make the assumption that both these dummy activities
have no resource or skill usage and a duration of zero. The activities are topologically
ordered, that is, an activity always has a higher label than all of its predecessors. The
project is said to be scheduled without pre-emption within the precedence relations and
with a set of renewable multi-skilled resources R, with R = 1, ..., |R|, resulting in a baseline
schedule with an activity starting time si and finishing time fi for each activity i 2 N that
minimises a certain objective function, e.g makespan or cost.

Each activity i 2 N has a certain predefined duration pi and a demand for renewable
resources, that is defined differently than for the RCPSP due to the presence of skills in
the problem formulation. While the resource constraints for the RCPSP are defined as a
set of renewable resource types (with index k = 1, ..., |K|), and each activity i is linked to
a resource k by its resource demand rik for each resource type k, the resource requirements
are adjusted for skills in the MSRCPSP. Each activity i 2 N requires rij resources that
master skill j of the set of available skills J for project G. More specifically, an activity
i has a certain resource demand that is defined as a skill requirement for the skill j of a
resource k. Note that a resource k can only be assigned to no more than one activity every
time unit t 2 T .

Every resource k from the set R masters at least one skill of the set of skills J , with
J = 1, ..., |J |, defined by the categorical skills bjk, which is equal to 1 if resource k masters
skill j and 0 otherwise. The number of resources that masters a certain skill j is equal to the
total skill availability aj of that skill j. Furthermore, in some extensions to the MSRCPSP
the multi-skilled resources are also characterized by hierarchical skills. These hierarchical
skills are represented by the skill level distribution bljk, which defines the hierarchical level
l 2 L at which a resource k 2 R masters the skill j 2 J . Similarly to bjk, bljk is equal to
1 if resource k masters skill j at level l and 0 otherwise. As such we assume that for the
MSRCPSP without hierarchical skills for multi-skilled resources, the number of levels |L| is
equal to 1. The order of the hierarchical skills can indicate the inherent differences between
the resources that can be outed in a substantial variety of ways dependent on the problem
at hand and its specifics. For instance, higher hierarchical skill level values can reduce the
processing time of an activity, while lower levels can increase the processing time. Along
the same lines, resources with higher skill levels can be more expensive, qualitative, flexible
or efficient, all of which will influence the final project schedule in their own manner.

3

3 Data generation procedure

The main structure of the generation procedure is displayed in Figure 1. For each
instance, we start off by retrieving a network from the Rangen2 generator (Vanhoucke, et

al. 2008) based on the number of activities |N | and the serial-parallel network indicator
SP . Next, the skill requirements rij are calculated from the project skill factor SF 2 [0, 1]
parameter, which determines the number of skill types that are required by each activity in
the project, and a desired variation in the skill requirements SF↵ 2 [0, 1], which is equal to
0 if all activities require the same amount of skill types. The variation in skill requirement
increases with an increasing value of SF↵.

Fig. 1. Flow of data generation procedure

Based on the skill requirements rij and a project skill strength parameter SS 2 [0, 1]
that determines the total skill scarceness in the project, we calculate the skill availability aj
for all skills j 2 J . The average skill availability in the project is directly related to the value
of the project skill strength SS. Additionally, we incorporate the skill strength variability
SS↵ 2 [0, 1] that introduces variability into the skill availabilities of all skills j 2 J . As
such, we can generate instances where all skills are equally scarce and instances where
some skill types are very scarce while others are widely available. Afterwards, we generate
the skill distribution bjk of the multi-skilled workforce using the acquired skill availability
aj , the resource availability parameter RA 2 [0, 1] and the resource availability variability
RA↵ 2 [0, 1]. The resource availability RA determines the number of resources over which
the available skills will be distributed, while the resource availability variability allows us to
generate workforces in which all resources master the same amount of skills or workforces
that consist of a combination of single-skilled and completely-skilled resources. Finally, we
implement the rejection method for this data generator by performing a feasibility check
on the new instance. When generating the skill distribution bjk we always assure that the
required skills for all activities are available in the workforce, but due to the fact that
multiple skills can be mastered by the same resources, it could be that some activities
turn out to be infeasible for the generated workforce. Therefore, we solve an assignment
problem for each activity to check whether the complete instance is feasible. For the SP ,
we generated instances with values from the following set {0.1, ..., 0.9}. Since we generated
instances with 4 skill types, |S| = 4, the instances included SF values ranging from 0.25
to 1. For all other parameters, instances can be found for the full range of the parameter
[0, 1].

In addition to these artificial instances, we have also gathered a total of 7 empirical
instances for the MSRCPSP that are collected from a software company and companies
that operate in the railway construction industry. Of these instances, 4 have a workforce
with only single-skilled resources, while the other 3 projects were executed by a multi-skilled
workforce. These empirical instances are used to validate and substantiate the artificially
generated instances of this procedure.

4

4 Conclusion

In this abstract, we present a new data generation procedure for the multi-skilled
resource-constrained project scheduling problem. The generator makes use of multiple skill-
specific parameters that determine the skill requirements and the skill distribution among
the resources. Additionally, we have incorporated variability parameters that are based on
the ↵

↵
max

principle (Labro and Vanhoucke 2008) in order to introduce variation of the re-
quirements over the activities and variation over the resources in terms of skill availability.
All artificial instances of the MSLIB set from this procedure as well as the empirical in-
stances for the MSRCPSP are available on our website https://www.projectmanagement.
ugent.be/research/project_scheduling/MSRCPSP.

Acknowledgements

The computational resources (Stevin Supercomputer Infrastructure) and services used
in this work were provided by the VSC (Flemish Supercomputer Center), funded by Ghent
University, FWO and the Flemish Government - department EWI.

References

Afshar-Nadjafi, B. (2020). Multi-skilling in scheduling problems: A review on models, methods
and applications, Computers & Industrial Engineering, page 107004.

Almeida, B. F., Correia, I., and Saldanha-da Gama, F. (2018). A biased random-key genetic
algorithm for the project scheduling problem with flexible resources, TOP, pages 1-26.

Bellenguez-Morineau, O., Néron, E., 2007. A branch-and-bound method for solving multi-skill
project scheduling problem, RAIRO-Operations Research, 41 (2), pp. 155-170.

Blazewicz, J., Lenstra, J. K. and Kan, A. R., 1983. Scheduling subject to resource constraints:
classification and complexity, Discrete applied mathematics, 5 (1), pp. 11-24.

Correia, I., Lampreia-Lourenc Ì§o, L., Saldanha-da Gama, F., 2012. Project scheduling with flexible
resources: formulation and inequalities, OR spectrum, 34 (3), pp. 635-663.

Gutjahr W.J., Katzensteiner, S., Reiter, P., Stummer, C., and Denk, M., 2010, Multi-objective
decision analysis for competence-oriented project portfolio selection, European Journal of Op-
erational Research, 205 (3), pp. 670-679.

Hartmann, S. and Briskorn, D., 2010. A survey of variants and extensions of the resource-
constrained project scheduling problem, European Journal of operational research, 207(1):1-14.

Hartmann, S. and Briskorn, D., 2021. An updated survey of variants and extensions of the resource-
constrained project scheduling problem, European Journal of operational research,

Labro, E. and Vanhoucke, M. (2008). Diversity in resource consumption patterns and robustness
of costing systems to errors. Management Science, 54(10):1715-1730.

Nembhard, D. A., and Uzumeri, M. V., 2000. Experiential learning and forgetting for manual and
cognitive tasks, International journal of industrial ergonomics, 25 (4), pp. 315-326.

Néron, E., 2002. Lower bounds for the multi-skill project scheduling problem, Proceeding of the
Eighth International Workshop on Project Management and Scheduling, pp. 274-277.

Riley, S. M., Michael, S. C. and Mahoney, J. T., 2017. Human capital matters: Market valuation
of firm investments in training and the role of complementary assets, Strategic Management
Journal, 38 (9), pp. 1895-1914.

Snauwaert, J. and Vanhoucke, M. 2021. A new algorithm for resource-constrained project schedul-
ing with breadth and depth of skills, European Journal of Operational Research, 292(1):43-59.

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., and Tavares, L. V. 2008. An evaluation of
the adequacy of project network generators with systematically sampled networks. European
Journal of Operational Research, 187(2):511-524.

Zabihi, S., Kahag, M. R., Maghsoudlou, H., and Afshar-Nadjafi, B. 2019. Multi-objective teaching-
learning-based meta-heuristic algorithms to solve multi-skilled project scheduling problem,
Computers & Industrial Engineering, 136:195-211.

1

Maximal slacks between lower bounds of the makespan

on parallel processors

Jacques Carlier1 and Claire Hanen23

1 Heudiasyc UMR CNRS 7253, Sorbonne Universités, Université de Technologie de Compiègne,
Compiègne, France

2 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France‘
3 UPL, Université Paris Nanterre, France

jacques.carlier@hds.utc.fr, claire.hanen@lip6.fr

Keywords: scheduling, makespan, parallel processors, worst case bound, lower bound

1 Introduction

Several lower bounds are known for a long time for the m- machines scheduling problem
with release dates and tails usually denoted by P |r

i

, q

i

|C
max

. The three main bounds are
the preemptive bound, the Jackson Pseudo Preemptive makespan (Carlier & Pinson 1998)
and the Energetic Reasoning bound (Erschler & Lopez 1990). There has been a lot of
efforts in the literature to improve the computation time of these bounds, among them
we can cite Baptiste et al. , 1999, Tercinet et al. , 2004, Hidri et al. , 2008, Ouellet &
Quimper , 2018, Carlier et al. , 2021. Such bounds are the basis of most branch and bound
algorithms or approximation algorithms for more complex problems (Néron 2008, Laborie
& Nuijten 2008, Haouari et al. 2012, Haouari et al. 2014, Carlier & Néron 2003, Hanen
et al. 2021).

In a recent paper, Carlier et al. , 2020 characterized mathematically these three classical
lower bounds for the m-machine scheduling problem. The paper give some insights into
the ways in which the bounds differ and their experiments show how close to each other
are these bounds.

The aim of our work is to exhibit tight values of the maximal slack between the three
lower bounds, to which we add the upper bound on the optimal preemptive schedule defined
by the Jackson preemptive schedule (Jackson 1955). We prove that the slack is always less
than the maximum processing time of a job, and we characterize more accurately the worst
case slack depending on the structure of the schedules or pseudo-schedules. Proofs are
omitted in this extended abstract. Section 2 defines the notations for the rest of the paper.
In Section 3 we characterize the structure of a worst case and we get a tight bound on the
slack between pseudo-preemptive and preemptive bound. Section 4 measures the worst case
slack between energetic bound and pseudo-preemptive bound, and also provide structure
of worst cases. And finally Section 5 discuss the slack between the jackson preemptive
schedule and the jackson pseudo-preemptive schedule.

2 Problem definition and notations

We consider in this paper the two problems usually denoted by P |r
i

, q

i

, pmtn|C
max

and
P |r

i

, q

i

|C
max

defined by:

– A set of n jobs T
– For each job J

i

2 T , a release date r

i

,a processing time p

i

, a tail q
i

– m parallel processors

2

A non preemptive schedule � assigns to each job J

i

a completion time C

i

(�) � r

i

+p

i

such
that at most m jobs are performed at each time t:

8t, |{J
i

, C

i

(�)� p

i

 t < C

i

(�)}|  m

In a preemptive schedule the jobs might be interrupted several times before their comple-
tion, and is usually defined by an instantaneous rate function ⇢

i

(t) for each job J

i

and each
time t. The optimization criteria is in both cases the makespan C

max

(�) defined by :

C

max

(�) = max

Ji2T
C

i

(�) + q

i

In Carlier & Pinson , 1998 is defined the notion of pseudo-preemptive schedule, in which
the instantaneous rate might at some condition be greater than 1, and which defines a
lower bound on the makespan of the optimal preemptive schedule. Energetic reasoning
introduced in Erschler & Lopez , 1990 gives a lower bound on the optimal makespan of a non
preemptive schedule. In the rest of the paper we denote by C

PR

max

the optimal makespan of
a preemptive schedule, by C

JPPS

max

the optimal makespan of a pseudo-preemptive schedule,
and by C

ER

max

the lower bound based on energetic reasoning.

3 Slack between pseudo-preemptive and preemptive bound

During this work, we defined an algorithm to build a preemptive schedule from the
optimal pseudo-preemptive schedule, the makespan of which is at most CJPPS

max

+p

max

. We
then used the Gale conditions (Gale 1957) on the optimality of network flows to characterize
the structure of the optimal preemptive schedule with subsets of tasks and their time
intervals. Then assuming a critical subset, we defined eight elementary transformations of
an instance that do not decrease C

PR

max

and do not increase C

JPPS

max

nor p

max

.
This allows us to characterize the structure of the worst case instance as illustrated

by figure 1 and call it a Bandoneon instance which is composed with K subsets of bridge
jobs and K + 1 pillars of sand jobs (i.e. very small jobs). From this structure we derive
a mathematical program whose variables are the slack between C

PR

max

and C

JPPS

max

and for
each bridge k the volume of its part x

k

performed in its left pillar (resp z

k

in its right
pillar), its thickness e

k

and the volume of its part performed between the pillars y

k

in the
optimal preemptive schedule.

x

1

z

1

x

2

z

2

x

3

z

3

y

1

y

2

y

3

e

1

sand jobs

e

2

e

3

r(1)

C

PR
max

� q(1)

r(2)

C

PR
max

� q(2)

r(3)

C

PR
max

� q(3)

r(4)

C

PR
max

� q(4)

Fig. 1. Optimal preemptive schedule of a bandoneon instance with 3 bridges

Based on the study of dominant solutions of this program, we then establish the fol-
lowing bound on the slack between C

PR

max

and C

JPPS

max

and we prove it is tight. In the worst
case instance all bridges have the same thickness.
Theorem 1. for a worst case instance with K bridges, we get

C

PR

max

� C

JPPS

max

 min

✓
m� 1

m

,

(

p
K + 1� 1)

2

K

◆
⇥ p

max

3

Fig. 2. Pseudo-preemptive schedule of the bandoneon instance of Figure 1

4 Slack between energetic bound and preemptive bounds

Carlier et al. , 2020 gives a characterization of critical intervals for the energetic bound
C

ER

max

with respect to the intermediate bound called crossing jobs bound and denoted by
C

CJ

max

. In this secton we use this result to analyse the slack between C

ER

max

, C

PR

max

and
C

JPPS

max

. For a given makespan C, a job J

i

is said to be a crossing job at time t if t 2
[C � q

i

� p

i

, r

i

+ p

i

). The crossing job bound corresponds to the minimal value of C the
ending point such that there are no more than m crossing jobs at each time t.

Case 1 We first consider instances such that C

PR

max

> C

ER

max

. Then we can establish that
for some dominant bandoneon instances, we have C

ER

max

= C

JPPS

max

. So for this case the
maximum slack is given by theorem 1.

Case 2 We now consider instances for which C

PR

max

< C

ER

max

. Among these instances we
can build what we call the rake instance R, build from m + 1 jobs with unit processing
times. for this instance C

PR

max

(R) =

m+1

m

whereas C

ER

max

(R) = 2 so that the difference is
m�1

m

. And finally in both cases by analyzing the relation to C

CJ

max

and the presence of
crossing jobs, we get the maximal slack :

Theorem 2.

��
C

PR

max

� C

ER

max

��  m� 1

m

p

max

and C

ER

max

� C

JPPS

max

 m� 1

m

p

max

(1)

5 Slack between pseudo-preemptive lower bound and Jackson preemptive up-

per bound

Sanlaville , 1995 proved that the Jackson preemptive schedule (which gives a suboptimal
preemptive schedule) achieves a slack with the optimal schedule not larger than m�1

m

p

max

.
In this section we give a new proof of this result by comparing the makespan of the Jackson
preemptive schedule to the pseudo-preemptive bound.
Theorem 3.

C

JPS

max

� C

JPPS

max

 m� 1

m

p

max

We prove that this slack is asymptotically tight using a special purpose Bandoneon instance.

4

6 Conclusion

Using modeling, algebra, algorithms and scheduling theory, we established that the
main lower bounds for our problem are very close to each other even in the worst case.
This theoretically confirms previous experiments. Moreover, as in Carlier et al. , 2020, the
bounds on slacks can be extended to the cumulative scheduling problem (CuSP). So, when
using such bounds in branch and bound methods, it seems reasonable to use the one with
the least algorithmic complexity.

References

Baptiste, P., Le Pape, C. & Nuijten, W. , 1999, “Satisfiability tests and time - bound adjustments
for cumulative scheduling problems”, Annals of Operations Research 92(0),pp. 305–333.

Carlier, J. , 1987, “Scheduling jobs with release dates and tails on identical machines to minimize
the makespan”, European Journal of Operational Research 29,pp. 298–306.

Carlier, J. & Pinson, E. , 1998, “Jackson’s Pseudo Preemptive Schedule for the Pm|ri, qi|Cmax

scheduling problem”, Ann. Oper. Res. 83,pp. 41–58.
Carlier, J. & Néron, E. , 2003, “On linear lower bounds for the resource constrained project

scheduling problem”, Eur. J. Oper. Res. 149(2),pp. 314–324.
Carlier, J., Pinson, E., Sahli, A. & Jouglet, A. , 2020, “Comparison of three classical lower bounds

for the Cumulative Scheduling Problem”, (submitted) .
Carlier, J., Sahli, A., Jouglet, A. & Pinson, E. , 2021, “A faster checker of the energetic reasoning for

the cumulative scheduling problem”, International Journal of Production Research 0(0),pp. 1–
16.

Erschler, J. & Lopez, P. , 1990, Energy-based approach for task scheduling under time and re-
sources constraints, in ‘2nd International Workshop on Project Management and Scheduling,
Compiègne (France)’, pp. 115–121.

Gale, D. , 1957, “A theorem on flows in networks.”, Pacific Journal of Mathematics 7(2),pp. 1073
– 1082.

Hanen, C., Kordon, A. M. & Pedersen, T. , 2021, “Two deadline reduction algorithms for scheduling
dependent tasks on parallel processors”, in P. J. Stuckey, ed., ‘CPAIOR 2021,’, Vol. 12735 of
Lecture Notes in Computer Science, Springer, pp. 214–230.

Haouari, M., Kooli, A. & Néron, E. , 2012, “Enhanced energetic reasoning-based lower bounds for
the resource constrained project scheduling problem”, Comput. Oper. Res. 39(5),pp. 1187–
1194.

Haouari, M., Kooli, A., Néron, E. & Carlier, J. , 2014, “A preemptive bound for the resource
constrained project scheduling problem”, Journal of Scheduling 17(3),pp. 237–248.

Hidri, L., Gharbi, A. & Haouari, M. , 2008, “Energetic reasoning revisited: application to parallel
machine scheduling”, Journal of scheduling 11(4),pp. 239–252. Publisher: Springer.

Jackson, J. R. , 1955, “Scheduling a production line to minimize maximum tardiness”, management
science research project . Publisher: University of California.

Laborie, P. & Nuijten, W. , 2008, “Constraint programming formulations and propagation algo-
rithms”, in ‘Resource Constrained Project Scheduling’, John Wiley & Sons, Ltd, pp. 63–72.

Néron, E. , 2008, “Resource and precedence constraint relaxation”, in ‘Resource Constrained
Project Scheduling’, John Wiley & Sons, Ltd, pp. 37–48.

Ouellet, Y. & Quimper, C.-G. , 2018, “ A O(n log

2

n) checker and O(n

2

log n) filtering algorithm
for the energetic reasoning”, in W. J. v. Hoeve, ed., “CPAIOR 2018’, Vol. 10848 of Lecture
Notes in Computer Science, Springer, pp. 477–494.

Sanlaville, E. , 1995, ‘Nearly on line scheduling of preemptive independent tasks’, Discret. Appl.
Math. 57(2-3), 229–241.

Tercinet, F., Lenté, C. & Néron, E. , 2004, “Mixed satisfiability tests for multiprocessor scheduling
with release dates and deadlines”, Oper. Res. Lett. 32(4),pp. 326–330.

1

Comparative Study of Two Machine Learning Tasks in

Project Scheduling

Weikang Guo1, Mario Vanhoucke1,2,3 and José Coelho1,4

1 Faculty of Economics and Business Administration, Ghent University, Belgium
weikang.guo@ugent.be, mario.vanhoucke@ugent.be, jose.coelho@uab.pt

2 Technology and Operations Management, Vlerick Business School, Belgium
3 UCL School of Management, University College London, United Kingdom

4 INESC - Technology and Science, Porto (Portugal) and Universidade Aberta, Portugal

Keywords: project scheduling, machine learning, performance prediction.
1 Introduction

Machine learning (ML) plays a major role in many scientific applications and has
become one of the most promising growing fields of research. The major ML approaches
can be classified into two main categories: supervised learning (Parvin et. al. 2013) and
unsupervised learning (Minaei-Bidgoli et. al. 2014). Multi-label classification and label
ranking are two important tasks in supervised learning. This research aims to provide a
comparative study of these two tasks for resource-constrained project scheduling.

The resource-constrained project scheduling problem (RCPSP) has received widespread
attention from researchers and has become one of the most popular problems to be solved in
the project management and scheduling literature. The basic version of the RCPSP assumes
that a single project consisting of a number of activities should be scheduled in order to
finish the project as soon as possible. The activities are interrelated by finish-to-start
precedence relations with a minimal time-lag of zero, and cannot be preempted. Moreover,
each activity makes use of a set of renewable resources, for which their availabilities are
limited. A schedule is said to be feasible if it respects the precedence constraints and the
resource constraints, and is optimal if no other feasible schedule exists with a lower project
duration (known as the project makespan).

As a generalization of the job-shop scheduling problem, the RCPSP is known to be NP-
hard in the strong sense (Blazewicz et. al. 1983). Therefore, the branch-and-bound (B&B)
technique is the most common way to deal with this problem to get optimal solutions
(Brucker et. al. 1998). Some branch-and-bound algorithms can be found in Stinson et.

al. (1978). Coelho and Vanhoucke (2018) developed a branch-and-bound procedure that
takes into account all best performing components from literature. This so-called composite

branch-and-bound procedure (CBP) is used as the basis of the current study. It makes use
of 48 different configurations which are combinations of various branching schemes, search
strategies, lower bounds, and branching orders.

In the current study, 24 configurations are selected and each project instance is solved
by each of these configurations truncated after 1 minute. Most configurations could not
find the optimal solutions within such a short time and therefore the goal of two machine
learning tasks is to obtain the best performing configuration for a project based on the
characteristics of the project instance (i.e. project indicators). Since each project instance
may have more than one configuration that generates the best possible makespan, select-
ing the best configuration can be treated as a multi-label learning problem. In this work,
multi-label classification and label ranking tasks will be introduced to automatically clas-
sify or rank the performance of 24 configurations, and then select the best performing
configuration to solve the project instance to optimality (a near optimality if truncated
early). The purpose of multi-label classification is to find the mapping between the project
indicators and the performance of the 24 configurations of the CBP in order to predict

2

which configurations can produce the best solution for the project instance. The goal of
label ranking is to learn a mapping between project indicators and a full ranking list of the
24 configurations of the CBP to provide preference information on the quality of these 24
configurations for the project instance.

This is, to the best of our knowledge, the first research study to investigate the relation
between project indicators and the full ranking list of the performance of various configura-
tions of different branch-and-bound procedures using a prediction model. We will compare
the performance of the two different learning tasks (multi-label classification and label
ranking) on a test set of benchmark instances, and their performance will be compared
with the performance of the individual configurations of the CBP.
2 Problem description

The resource-constrained project scheduling problem (RCPSP) can be formulated as
follows: A set of activities N , numbered from a dummy start node 0 to a dummy end node
n + 1, is to be scheduled without pre-emption on a set R of renewable resources types.
Each renewable resource k 2 R has a constant availability a

k

per period. Each nondummy
activity i 2 N has a deterministic duration d

i

and requires r

i,k

units of resource type k 2
R. The start and end dummy activities 0 and n + 1 represent the start and completion
of the project, which their duration and renewable resource requirement equal to zero. A
project network is represented by a topological ordered activity-on-the-node (AoN) format
where A is the set of pairs of activities between which a finish-start precedence relationship
with time lag 0 exists. We assume graph G(N,A) to be acyclic. A schedule S is defined by
a vector of activity start times and is said to be feasible if all precedence and renewable
resource constraints are satisfied. The objective of the problem type is to find a feasible
schedule within the lowest possible project makespan, and hence, the problem type can be
represented as m, 1T |cpm|C

max

using the classification scheme of Herroelen et. al. (1999)
or as PS|prec|C

max

following the classification scheme of Brucker et. al. (1999).
Project indicators: As mentioned in the introduction, our multi-label classification and
ranking tasks aim to find the mapping between the project indicators and the performance
of 24 configurations of the CBP. To that purpose, the most well-known project indicators
are used in our study that describe the activity, the network, and the resource character-
istics of a project instance. In total, 12 project indicators are used, classified as activity

indicators (Number of activities), network indicators (Coefficient of Network Complexity
(CNC), Order Strength (OS), Serial/Parallel (SP), Activity Distribution (AD), Length
of Arcs (LA), Topological Float (TF), and Length of long arcs (I5)) and resource in-

dicators (Resource Factor (RF), Resource Use (RU), Resource Strength (RS), Resource
Constrainedness (RC)).
Various configurations: Coelho and Vanhoucke (2018) have shown that their composite

lower bound strategy not only improves the current solutions of individual configurations,
but also generates new best-known solutions for existing datasets. This branch-and-bound
procedure is, to the best of our knowledge, the most complete procedure that integrates
the best performing components from the literature, which is why we have used it in the
current study. The main components of the 24 configurations we selected are given below.
– Search strategy: Either the minimum lower bound strategy (LBS) or the upper bound

strategy (UBS) is used.
– Branching scheme: The branching scheme consists of the activity start branching

(AST), the parallel branching (PAR), and the serial branching (SER).
– Branching order: The selection of a node at each level of the tree can be done using

the activity ID (AID) or the best lower bound (BLB).
– Composite lower bound (CLB): Four lower bounds are used in the algorithm, and

they are integrated in a composite way as described in the original paper as CLB0,

3

CLB4, CLB8, and CLB12. CLB0 only calculates the critical path based lower bound
(LB

cp

), CLB4 is defined as the CLB0 plus the critical capacity lower bound (LB
cc

),
the critical sequence lower bound (LB

cs

), the incompatible pairs lower bound (LB
ip0)

and the basic version of the node packing lower bound (LB
np0). CLB8 is defined as

the CLB4 plus two extensions of the node packing lower bound (LB
np2 and LB

np1),
one parallel machine based lower bound, and the incompatible triplets lower bound.
CLB12 is defined as the CLB8 plus an extended version of the machine lower bound,
the lower bound found by reduction by precedence, the lower bound found by reduction

by core times, and the lower bound found by reduction by time periods.
3 Machine learning framework

The machine learning framework consists of three different steps, which are briefly
outlined along the following lines.

Step 1. Data Split. In the first step, the dataset is split into a training set, a val-
idation set, and a testing set. The training set is used in the learning phase to build a
relation between the project indicators (inputs, features) and the performance of different
configurations (outputs, labels). For the multi-label classification task, the classification
model will predict whether a configuration can generate the best possible solution among
the set of 24 configurations. Specifically, in case a specific configuration generates the best
possible makespan, the configuration is set to 1 (positive), and 0 (negative) otherwise.
For the multi-label ranking task, the ranking model will predict a full ranking list of 24
configurations based on the makespan values of the instance in the dataset. Both the clas-
sification model and the ranking model are built to learn the relationship between the
12 project indicators and these labelled configurations. In the current study, decision tree
multi-label classification models proposed by Guo et. al. (2021) are used and compared
with one ranking model.

Step 2. Hyper-parameter optimization. In this step, the validation set is used
to find the optimal parameter settings for the classification and ranking models. More
specifically, the classification and ranking models are fine-tuned by setting the parameters
to different values to obtain their best possible values.

Step 3. Performance evaluation. Once the training and validation steps are finished,
the parameters that yield the best possible values for classification and ranking models are
selected, and both types of models are now retrained on the whole set (including the
training set and the validation set). After that, the learned relationship is applied to the
testing set to predict the final performance of the classification and ranking models. For the
testing set, the project indicators for each project instance are calculated and entered in the
classification and ranking models to select one or more configurations to solve the instances
in this set. For the classification task, it is possible that more than one configuration can
be predicted to be positive, in which case all these positive labels are used to solve the
instance, after which the best makespan is reported as the best possible makespan and the
algorithm stops. For the ranking task, the predictions generated by the classification model
are the full ranking list of 24 configurations, and so only the top x configurations (x  10)
in the prediction are used to solve the instances of the test set.
4 Preliminary results

The aim of the computational experiments is twofold. First, the performance of the
two learning tasks for predicting the configurations of the branch-and-bound procedure
will be compared within a time limit of 60 seconds. Second, the quality of the obtained
solutions generated by the classification and ranking models will be compared with the
solution of the individual configurations, both for the best found lower bounds and upper
bounds. These results consist of the best performing single configuration, as well as the
best solution found over all 24 configurations (indicated in Table 1 as OPT). It should be

4

noted that the classification and ranking methods can never find a solution better than
OPT, but should at least perform better than any individual configuration.

Table 1 shows the results for the upper bounds (UB) and lower bounds (LB) expressed
as the sum of the makespan over all instances in the test set. The table shows that the
classification models and the ranking model outperform the single best configuration, and
the solutions of the ranking model lie closer to the optimal case (OPT) than the solutions for
the classification models. These (limited) results illustrate the power of machine learning for
selecting best-performing components of an algorithm, and in the workshop presentation,
more detailed comparisons and results will be given.

Table 1. Performance comparison of various methods.
Various Methods UB Various Methods LB
OPT 37,643 OPT 25,818
Label ranking 37,681 Label ranking 25,816
Multi-label classification 40,173 Multi-label classification 25,812
The single best configuration (C221) 41,118 The single best configuration (C232) 25,773

1 C22 indicates the configuration which is a combination of UBS, PAR, BLB and CLB12.
2 C23 represents the configuration which is a combination of LBS, PAR, BLB and CLB12.

5 Conclusions
This work compares the performance of two types of machine learning tasks for solving

the RCPSP, which aim at mapping known project indicators with the performance of
various configurations of a composite B&B procedure from the academic literature. The
computational experiments show that both machine learning tasks outperform any single-
best configuration, and often come close to the optimal case. The future of this research
should focus on extending these machine learning tasks to solve other scheduling problems,
such as the resource-constrained multi-project scheduling problem (RCMPSP) and multi-

mode resource-constrained project scheduling problem (MRCPSP).
References
Blazewicz, J., J. Lenstra and A. Kan, 1983, “Scheduling subject to resource constraints: classifi-

cation and complexity. Discrete Applied Mathematics", Discrete Applied Mathematics, Vol.
5(1), pp. 11-24.

Brucker, P., S. Knust, A. Schoo and O. Thiele, 1998, “A branch and bound algorithm for the
resource-constrained project scheduling problem", European Journal of Operational Research,
Vol. 107(2), pp. 272-288.

Brucker, P., A. Drexl, R. Möhring and K. Neumann, 1999, “Resource-constrained project schedul-
ing: Notation, classification, models, and methods", European journal of operational research,
Vol. 112(1), pp. 3-41.

Coelho, J., M. Vanhoucke, 2018, “An exact composite lower bound strategy for the resource-
constrained project scheduling problem", Computers & Operations Research, Vol. 93, pp.
135-150.

Guo, W., M. Vanhoucke and J. Coelho, 2021, “Automatic detection of the best performing priority
rule for the resource-constrained project scheduling problem", Expert Systems with Applica-
tions, Vol. 167, pp. 114116.

Herroelen, W., E. Demeulemeester and B. De Reyck, 1999, “A classification scheme for project
scheduling", In Project scheduling, pp. 1-26.

Minaei-Bidgoli, B., H. Parvin, H. Alinejad-Rokny, H. Alizadeh, and W. Punch, 2014, “Effects of
resampling method and adaptation on clustering ensemble efficacy", Artificial Intelligence
Review, Vol. 41(1), pp. 27-48.

Parvin, H., H. Alinejad-Rokny, B. Minaei-Bidgoli and S. Parvin, 2013, “A new classifier ensemble
methodology based on subspace learning", Journal of Experimental & Theoretical Artificial
Intelligence, Vol. 25(2), pp. 227-250.

Stinson, J., E. Davis and B. Khumawala, 1978, “Multiple Resource Constrained Scheduling Using
Branch and Bound", A I I E Transactions, Vol. 10(3), pp. 252-259.

1 1 1 2

1 2

S%C(gij) (i, j)
j i

0  gij < 1 i
%C(qij)S (i, j

j i i
0 < qij  1

F%C(gij) (i, j)
j i

0  gij < 1 i
%C(qij)F (i, j)

j i i
0 < qij  1

G = (V,A)
V = {1, . . . , n} n

A

(1, 2) 2
60% 1

�

�

ϭ� ϯ� ϲ�
^й�;Ϭ͘ϮͿ� &й�;Ϭ͘ϲͿ�

ϴ�
й�;Ϭ͘ϮͿ&�

Ϯ� ϱ�
й�;Ϭ͘ϴͿ&�

ϰ� ϳ�
й�;Ϭ͘ϲͿ^�

^й�;Ϭ͘ϴͿ�

^й�;Ϭ͘ϲͿ�

й�;Ϭ͘ϰͿ&�

й�;Ϭ͘ϰͿ&�

&й�;Ϭ͘ϰͿ�

��

�

ϭ� Ϯ� ϯ�
&й�;Ϭ͘ϲͿ� ^й�;ϭͬϳͿ�

;ĂͿ�
Ăϭ�с�Ăϭ�с�Ϭ͘Ϯ�
ĂϮ�с�Ϭ͘ϭ͕�ĂϮ�с�Ϭ͘Ϯ�
Ăϯ�с�Ăϯ�с�ϭͬϳ�

�

�

Ϭ� ϭ� Ϯ� ϯ� ϰ�
^й�;ϬͿ� й�;ϭͿ^�&й�;Ϭ͘ϲͿ� ^й�;ϭͬϳͿ�

;ďͿ�

Ϭ ϭ Ϯ ϯ ϰ
Ϭ� ϳ�

ϱ�ʹ�Ŭʹ;Ϭ͘ϲ͕�ǇϮͿ� ʹϭ�

Ϭ�
Ϭ�

Ŭн;ϭ͕�ǇϮͿ�

;ĐͿ�

Ŭʹ;Ϭ͘ϲ͕�ǇϮͿ�с�¬ŵŝŶ΂Ϭ͘ϲ͕�ǇϮ΃ͬĂϮ¼�н�¬;Ϭ͘ϲ�ʹ�ŵŝŶ΂Ϭ͘ϲ͕�ǇϮ΃ͿͬĂϮ¼��

Ŭн;ϭ͕�ǇϮͿ�с�ªŵŝŶ΂ϭ͕�ǇϮ΃ͬĂϮº�н�ª;ϭ�ʹ�ŵŝŶ΂ϭ͕�ǇϮ΃ͿͬĂϮº�с�ªǇϮͬĂϮº�н�ª;ϭ�ʹ�ǇϮͿͬĂϮº��

ϭͿ�ǇϮ�с�ϭ�;ĂĐƚŝǀŝƚǇ�Ϯ�ŝƐ�ĞǆĞĐƵƚĞĚ�Ăƚ�ŝƚƐ�ŵŝŶŝŵƵŵ�ƐƉĞĞĚ�ĂϮ�с�Ϭ͘ϭͿ�

ƐϬ�с�Ϭ�
Ϭ� ϭ� Ϯ� ϯ� ϰ�

Ϭ� ϳ�
ϱ�ʹ�;ϲ�н�ϬͿ�

ʹϭ�

Ϭ�
Ϭ�

;ϭϬ�н�ϬͿ�

Ɛϭ�с�Ϭ� ƐϮ�с�Ϭ� Ɛϯ�с�Ϭ� Ɛϰ�с�ϭϬ�
�ŵĂǆ�с�ϭϬ�

ƐϬ�с�Ϭ�
Ϭ� ϭ� Ϯ� ϯ� ϰ�

Ϭ� ϳ�
ϱ�ʹ�;ϰ�н�ϭͿ�

ʹϭ�

Ϭ�
Ϭ�

;ϰ�н�ϯͿ�

Ɛϭ�с�Ϭ� ƐϮ�с�Ϭ� Ɛϯ�с�Ϭ� Ɛϰ�с�ϳ�
�ŵĂǆ�с�ϳ�

Ϭ� ϭ� Ϯ� ϯ� ϰ�
Ϭ� ϳ�

ϱ�ʹ�;Ϭ�н�ϯͿ�
ʹϭ�

Ϭ�
Ϭ�

;Ϭ�н�ϱͿ�

ƐϬ�с�Ϭ� Ɛϭ�с�Ϭ� ƐϮ�с�Ϯ� Ɛϯ�с�ϭ� Ɛϰ�с�ϴ�
�ŵĂǆ�с�ϴ�

;ĚͿ�

ϮͿ�ǇΎϮ�с�Ϭ͘ϰ�;ĂĐƚŝǀŝƚǇ�Ϯ�ŝƐ�ĨŝƌƐƚůǇ�ĞǆĞĐƵƚĞĚ�Ăƚ�ŝƚƐ�ŵŝŶ͘�ƐƉĞĞĚ�ĂϮ�с�Ϭ͘ϭ�ĨŽƌ�ϰϬй�ŽĨ�ŝƚƐ�
�����ǁŽƌŬ�ĂŶĚ�ƚŚĞŶ�Ăƚ�ŝƚƐ�ŵĂǆ͘�ƐƉĞĞĚ�ĂϮ�с�Ϭ͘Ϯ�ĨŽƌ�ƚŚĞ�ƌĞŵĂŝŶŝŶŐ�ϲϬй�ŽĨ�ŝƚƐ�ǁŽƌŬͿ�

ϯͿ�ǇϮ�с�Ϭ�;ĂĐƚŝǀŝƚǇ�Ϯ�ŝƐ�ĞǆĞĐƵƚĞĚ�Ăƚ�ŝƚƐ�ŵĂǆŝŵƵŵ�ƐƉĞĞĚ�ĂϮ�с�Ϭ͘ϮͿ�

si ⇡i

i 2 V

C⇤
max

ai āi 0  ai  āi  1 i 2 V

i
[ai, āi]

ai
i

⇡
(ai,āi)

i (yi) i
yi 0  yi  1 ai

(1� yi) āi

⇡h h

i ⇡
(ai,āi)

i (yi) i
i

y⇤i yi

i ⇡
(ai,āi)

i (y⇤i)

G = (V,A)
N = (V 0, A0) V 0 = V [{0, n + 1} 0

n + 1 A ⇢ A0

SSmin

ij (`ij(yi, yj)) `ij(yi, yj)

y⇤i

y⇤i |A|

i 2 V
N

y⇤i yi
0 i yi

y⇤i

1

A branch and bound approach for stochastic 2-machine

flow shop scheduling with rework

Lei Liu1 and Marcello Urgo1

Politecnico di Milano, Mechanical Dept., Italy
lei.liu, marcello.urgo@polimi.it

Keywords: Flow shop, Rework, Markovian chain, Branch and bound

1 Introduction and problem statement

Turbine blades are one of the most expensive components in gas turbines for power
generation, due to materials used and the complex manufacturing process. For this reason,
their re-manufacturing is an economically viable approach to obtain refurbished parts for
the maintenance of gas turbines. Re-manufacturing processes, differently from production
of new parts, are characterized by a considerable degree of uncertainty. With respect to
turbine blades, the repair process entails the removal of the hard coating and the damaged
parts, the addition of the missing material through an additive manufacturing processes
and their grinding. Hence, an additional material removal phase is required by means of
electrical discharge technologies, to obtain the final desired shape. Within the described
process, two of the most relevant re-manufacturing activities are the addition of materials
through a welding process and the following grinding process. Moreover, blades quite always
need to be reworked by the repetition of the same sequence of operations, thus competing
for the same resources. Blades are processed in batches, consisting of a set of blades of the
same stage of the turbine. The number of blades in each batch is not known in advance.
In fact, some of the blades in the batch could be too damaged to be repaired and must be
substituted with new ones. The processing times for each batch of blades in the different
phases, included the rework ones, also entails a certain degree of uncertainty. Blades with
a higher degree of damages requires longer processing times respect to less severe damages.
The uncertainty associated to these factors is embedded in the processing times associated
to batches of blades, described through a probability distribution.

In this paper, we focus on the scheduling of the two re-manufacturing phases described
above, i.e., welding and grinding, modeling the process through a stochastic 2-machine
permutation flow shop scheduling problem with rework. A set of jobs N , representing
batches of blades, must be processed on two machines, M1 and M2 in sequence. The
sequence of the jobs on the two machines is the same. After their processing on the second
machine, jobs will need a rework cycle on both M1 and M2 (Fig 1). Rework jobs are grouped
in an additional set N 0. The processing time of a job j 2 N [N 0 on machine Mi, denoted
as fij , is modeled as an independent random variable following a general distribution.

After the first processing, blades undergo an inspection to determine the parameters
of the rework process. The inspection is operated offline respect to the flow shop. For this
reason, in order to consider the time needed for this phase, we state that rework jobs can
be processed not earlier than 2 jobs after the corresponding original job, unless the jobs to
be processed are less than 2. To provide an example, let us consider a schedule referring
to 4 jobs [a, b, c, d] and their corresponding rework jobs [a0, b0, c0, d0]. Thus, a full repair
schedule can only be one of the following: [a, b, c, a0, d, b0, c0, d0], [a, b, c, d, a0, b0, c0, d0] and
[a, b, c, a0, b0, d, c0, d0].

The objective function considered is the minimization of the Value-at-Risk (VaR) (Urgo,
M. and Vancza, J. 2019) of the makespan, with the aim to provide a robust solution. To

2

Fig. 1. Manufacturing environment

address this scheduling problem, we propose a branch and bound approach. The processing
of the jobs is modeled through a Markov chain (Kulkarni, V.G. and Adlakha, V.G. 1986),
whose time to absorption correspond to the makespan of the schedule, enabling the calcula-
tion of the VaR. To extend the approach beyond exponential processing times, phase-type
distributions are used, due to their capability to approximate general distributions (Bladt,
M. 2005).

2 Branch and bound algorithm

The branching scheme is aimed at the definition of a full schedule, containing both
original and rework jobs. A forward branching scheme is used, sequencing the jobs starting
from the beginning of the schedule. Due to the need to respect the constraints affecting
the sequencing of rework jobs, nodes in the branching tree which are in conflict with these
constraints are pruned before being evaluated.

A heuristic rule (Baker, K.R. and Trietsch, D. 2011) is exploited to obtain an initial
upper bound for the search. This schedule is obtained by arranging all the jobs according
to the decreasing order of (1/E(j1) � 1/E(j2)) with E(j1) and E(j2) being the expected
value of the processing times of job j on machines 1 and 2 respectively. If the resulting
schedule is in conflict with the constraints affecting the sequencing of rework jobs, they are
shifted towards the right until the conflicts are eliminated.

To illustrate the approach for the calculation of the VaR of a schedule, let us con-
sider an Activity on Arc (AoA) network of activities modeled as an acyclic directed graph
G = (V,A). Each arc in G represents an activity while the nodes in V represents states.
At a given time t, an activity can only be active, dormant or idle (Kulkarni, V.G. and
Adlakha, V.G. 1986). If we consider the schedule [a, b, c, a0, d, b0, c0, d0], corresponding AoA
network is reported in Fig.2. Hence, the set of states modeling the execution of the network,
constituting the support of the Continuous Time Markov Chain (CTMC), can be obtained
(Fig. 3).

a1

a2

b1 c1 a01 d1 b01 c01 d01

b2 c2 a02 d2 b02 c02 d02

Fig. 2. AoA activity network for a two-machine flow shop with rework

Starting from this, the set of states is further enriched to consider phase-type distribu-
tions. In fact, these distribution can be in turn defined through a CTMC. Thus, each of the
states in Fig. 3 represents a set of states defined by the phase type modeling the processing
times of the different activities. The infinitesimal generator of the extended CTMC can be
obtained, starting from the one associated to the states in Fig. 3, using a Kronecker alge-

3

a1 a2b1

a⇤
2b1

a2c1

a2c
⇤
1

b2c1

b⇤2c1

b2a
0
1

b2d1

b2d
⇤
1

c2a
0
1

c⇤2a
0
1

c2d1

c2b
0
1

c2b
0⇤
1

a0
2d1

a0⇤
2 d1

a0
2b

0
1

a0
2c

0
1

a0
2d

0
1

a0
2d

0⇤
1

d2b
0
1

d⇤
2b

0
1

d2c
0
1

d2c
0⇤
1

b02c
0
1

b0⇤2 c01

b02d
0
1

b02d
0⇤
1

c02d
0
1

c0⇤2 d0
1

c02d
0⇤
1

d0
2

Fig. 3. States generation scheme

bra approach (Angius, A. et. al. 2021). The distribution of the time to absorption of the
described CTMC and the quantile corresponding to the V aR↵ can be obtained according
to Eq. 1,

F (t) = 1� �eTt1, ↵ = 1� �eT⇤V aR1 (1)

The described approach applies to full schedules and can support the analysis of leaf
nodes in the search tree. For the evaluation of the other nodes, let us consider a partial
schedule with s jobs already sequenced. For these jobs, an approach similar to the one
described for leaf nodes can be used, constituting the leftmost part of the network of
activities in Fig. 2. On the contrary, for the remaining n � s jobs, their processing times
on the two machines can be modeled through two activities (X1 and X2) whose processing
times are the sum of the ones of the original jobs. The AoA activity network for a partial
schedule [a, b, c, a0, . . .] is represented in Fig. 4. Grounding on this network, precedence
constraints among operations on M1 and M2 for unsequenced jobs are relaxed. Since the
VaR of the makespan is a regular objective function, relaxing constraints will provide a
lower bound for the VaR of the complete schedules derived from the partial one considered.
Thus, the approach described above can be used to generate the associated CTMC and
estimate the lower bound of the VaR (Urgo, M. and Vancza, J. 2019).

a1

a2

b1 c1 a01 X1

b2 c2 a02 X2

Fig. 4. AoA activity network for a partial schedule

3 Numerical experiments

A set of test instances has been generated considering n = 6 jobs, thus a total of 12 jobs
including the rework ones. Processing times are modeled through phase-type distributions
randomly generated by the BuTools library (Horvath, G. and Telek, M. 2016) by providing
values for the mean and number of phases. The value of the mean is randomly sampled from
three different uniform distributions with support [0,20],[30,50] and [60,80]. The number
of phases is randomly sampled between 1 and 4. Different risk levels ↵ (10 and 20%) are

4

considered for the optimization. The results of the experiments are reported in Table 1 and
Fig.5, showing the performance of the branch-and-bound algorithm in terms of solution
time, number of evaluated nodes and average evaluation time per node.

Table 1. Results

Job No. Risk level (%)
Solution time(s) Evaluated nodes

Mean Min Max SD Mean Min Max SD
6 10 877.6 110.8 1383.8 404.1 12262 1627 22433 6569

20 900.9 143.6 2009.3 563.2 11442 2665 36028 9824
ALL 889.8 110.8 2009.1 480.9 11830 1627 36028 8223

Fig. 5. Performance of algorithm

Grounding on the experiments, the proposed algorithm is able to find the optimal
schedule in about 20 minutes, with 11830 nodes evaluated on average, and the average
single node evaluation time is about 0.08 seconds. According to these results, the time
to solve larger instance is likely to be rather large, future works will address the tighter
lower bounds and effective job insertion dominance rules. Nevertheless, in the considered
industrial environment, the number of jobs to schedule is in line with the one considered in
the computational experiments, thus the proposed approach is valuable for the company.

References

Angius, A., Horvath, A. and Urgo, M., 2021, “ A Kronecker Algebra Formulation for Markov
Activity Networks with Phase-Type Distributions", Mathematics, 9(12), p.1404.

Baker, K.R. and Trietsch, D., 2011. Three heuristic procedures for the stochastic, two-machine
flow shop problem. Journal of Scheduling, 14(5), pp.445-454.

Bladt, M., 2005. A review on phase-type distributions and their use in risk theory. ASTIN Bulletin:
The Journal of the IAA, 35(1), pp.145-161.

Horvath, G. and Telek, M., 2016. BuTools 2: a Rich Toolbox for Markovian Performance Evalua-
tion. In VALUETOOLS.

Kulkarni, V.G. and Adlakha, V.G., 1986. Markov and Markov-regenerative PERT networks. Op-
erations Research, 34(5), pp.769-781.

Urgo, M. and Vancza, J., 2019. A branch-and-bound approach for the single machine maximum
lateness stochastic scheduling problem to minimize the value-at-risk. Flexible Services and
Manufacturing Journal, 31(2), pp.472-496.

1

Problem-specific Priority Rules for the

Resource-Constrained Project Scheduling Problem with

Alternative Subgraphs

Rojin Nekoueian1, Tom Servranckx1 and Mario Vanhoucke1,2,3

1 Faculty of Economics and Business Administration, Ghent University, Belgium
rojin.nekoueian@ugent.be, tom.servranckx@ugent.be, mario.vanhoucke@ugent.be

2 Technology and Operations Management Area, Vlerick Business School, Belgium
3 UCL School of Management, University College London, UK

Keywords: Resource-Constrained Project Scheduling, Alternative Subgraphs, Priority
Rules.

1 Introduction

The scheduling of activities subject to resource and precedence constraints in order to
minimise the project makespan is known as the resource-constrained project scheduling
problem (RCPSP) (Kolisch and Hartmann 1999). This problem is known to be NP-hard
(Blazewicz et. al. 1983). Most research studies assume that the project structure is de-
terministic and completely known in advance. Based on discussions with practitioners,
researchers observed that large and complex project structures might consist of alterna-
tive work packages rather than a deterministic project network. In case that we relax
the assumption of a deterministic project structure, we consider a more general project
scheduling problem that consists of alternative, substitutable ways to execute the project
(Servranckx and Vanhoucke 2019). In this research, the RCPSP is therefore extended with
alternatives in order to allow a flexible network topology. The RCPSP with alternative
subgraphs (RCPSP-AS) is the problem of selecting one alternative for a work package, i.e.
a subset of activities in the project, among a set of existing alternatives. This problem in-
cludes two specific subproblems. First, an alternative work package should be selected (i.e.
selection subproblem) and then it should be scheduled considering constrained resources
(i.e. scheduling subproblem) (Servranckx and Vanhoucke 2019). There are various prob-
lems considering alternatives with different therminology. Besides the RCPSP-AS, there
exist other, similar scheduling problems that consider alternatives such as the RCPSP
with alternative process plan for production scheduling (Capek et. al. 2012). However,
these scheduling problems differ from the RCPSP-AS in terms of problem features and
terminology.

Schedule generation schemes (SGS) are the core of most heuristic solution procedures
for the RCPSP as they start from scratch and build a feasible schedule by the stepwise
extension of a partial schedule (Kolisch and Hartmann 1999). To generate a single or mul-
tiple schedules, researchers develop heuristics such as priority rule (PR)-based scheduling.
A PR defines the order of project activities to be employed in a SGS. PRs can be static or
dynamic. A static PR creates an activity list before employing SGS and once the activity
list is made it is saved and the activities’ priority in the list will not change. A dynamic PR
updates the priority of activities in the list each time an activity is scheduled. Therefore,
the priority of the remaining activities will change each time an activity is scheduled, but
without rescheduling the activities in the partial schedule. If a (static or dynamic) PR
generates a prioritized activity list that results in a high-quality schedule (i.e. low project
makespan), less effort will be needed for the improvement of this schedule. Therefore, aca-
demics constantly search for better PRs for various scheduling problems. There are plenty

2

of studies in the literature which develop new and more efficient PRs for specific problems.
Kolisch and Hartman (1999) and Kolisch and Hartman (2006) investigate on PRs for the
RCPSP. Cooper (1976) investigates two heuristic methods using a number of static and
dynamic PRs for the RCPSP. Capacho et. al. (2009) assign tasks of the assebly line to
workstations and examine two different PRs for selection and scheduling of the alternative
subgraphs in assembly line balancing problem (ASALBP). In this paper, we are going to
examine previously developed PRs and investigate PRs which are specifically practical for
RCPSP-AS.

2 Problem Statement

We consider a directed acyclic graph that represents the activity-on-the-node (AoN)
project network. The activities should be scheduled on a set of renewable resource types
for which the per-period available amount of each resource type is a previously known and
assumed constant over time. However, in RCPSP-AS, certain activities can be excluded
from the schedule, while the project still delivers on the required outcomes. In this problem,
the set of all activities consists of two mutually exclusive subsets of activities: the set of
fixed activities that should always be executed in order to complete the project, and the set
of alternative activities that are optional. Hence, the precedence and resource constraints
of an alternative activity should only be satisfied when the activity is scheduled. The objec-
tive of RCPSP-AS is to select for each alternative subgraph exactly one alternative branch
such that the makespan of the resulting project is minimised. There are several special
types of activities that need to be identified in order to define alternative subgraphs. A
principal activity causes the decision amongst different choices in the project structure.
Therefore, this fixed or alternative activity should have at least two mutually exclusive di-
rect, alternative successors of which at most one should be selected. An alternative activity
that is the direct successor of a principal activity is a branching activity. A terminal activity

terminates the decision amongst different choices in the project structure. An alternative

subgraph is an induced subgraph consisting solely of alternative activities that originate
from the same principal activity with the inclusion of the corresponding terminal activity.
A subset of activities in the alternative subgraph that consists of the branching activity
as well as all its transitive successors is called an alternative branch. An alternative path

is a subset that consists of the set of fixed activities and the logical feasible set of selected
alternative activities.

Servranckx and Vanhoucke (2019) have identified two relations between alternative sub-
graphs in the project network. A nested alternative subgraph is an alternative subgraph
that exists in another alternative subgraph. It might be that an alternative for one work
package is connected to an alternative of the same or a different work package. This im-
plies that decisions made in different work packages with alternatives are interconnected.
Projects that consist of this type of project structure are called linked projects.

3 Example

An example of a linked nested project is shown in Fig. 1. Activity 1 is a principal activity
and activity 9 is a terminal activity for the first alternative subgraph. One alternative path
to be mentioned is {1, 6, 7, 8, 9}. Considering the static PR named most immediate
successors (Slowinski and Weglarz 1989) and the tie-breaker rule of minimum activity
number, the list of prioritised activities for this example project is: {1, 2, 4, 3, 5, 6, 7, 8, 9}.
According to this list of prioritized activities, branching activity 2 is prioritised. Therefore
this branching activity will be selected and all activities not related to this activity will be

3

removed. Activity 2 triggers a nested subgraph. Note that activity 4 is linked to activity
7 of another alternative and thus activity 7 and its successors in the other alternative will
be selected if branching activity 4 is selected. After deleting act. 3 and 6, the new activity
list is: {1, 2, 4, 5, 7, 8, 9}. This updated activity list will be used for scheduling.

Fig. 1. An example of a linked nested project

4 Methodology

Since the RCPSP-AS consists of two subproblems (i.e. selection and scheduling sub-
problem), a feasible schedule can be obtained in two ways. First, a single PR is used to
make a selection between the branching activities and, subsequently, schedule the corre-
sponding selected activities. In this study, we will test various PRs that were traditionally
developed for the RCPSP (Slowinski and Weglarz 1989). Second, two different priority
rules can be used for the selection and scheduling subproblem, respectively. To select an
alternative branch, we only consider the priority of immediate successors. For the schedul-
ing subproblem, we use a PR similar to the PR that is used in case that both subproblems
are scheduled using a single PR. We employ a serial schedule generation scheme (SSGS)
to provide a feasible as soon as possible schedule for a given activity list.

5 Results

We find the average makespan for 36,000 project instances with different characteristics
provided by Servranckx and Vanhoucke (2019) employing PRs developed for RCPSP and
PRs by Capacho et. al. (2009). In Capacho et. al. (2009) selection PRs are defined as
NP selects for each subassembly the subgraph with the minimum number of precedence
relations; TT selects the subgraphs that involve the minimum total processing time of tasks;
and NT selects the subgraphs that involve the minimum number of tasks. In Table 1, we
show the average project makespan in case that two different PRs are used for the selection
and the scheduling subproblem (upper part of Table 1) or a single PR is used for both
subproblems (lower part of Table 1). The results show that employing a specific selection
PR that is different from existing scheduling PRs in the literature generates schedules
with shortened project duration for the RCPSP-AS. The selection of a subgraph with
minimum processing time of activities dramatically decreases average project makespan in
comparison to other selection and scheduling PRs for the RCPSP. Moreover, latest work
station and minimum slack are scheduling PRs that produce shortened average project
makespan for the tested project instances.

4

We call the PRs employed in the work of Capacho et. al. (2009) problem-specific since
they distinguish between selection and scheduling PRs and their proposed PRs minimize
the average makespan for the tested RCPSP-AS project instances.

Table 1. Average makespan of 36,000 instances for PRs in the literature

(Capacho et. al. 2009)

Maximum
task time

Minimum
earliest
work-
station

Minimum
latest
work-
station

Minimum
slack

Maximum
number of
immediate
successors

NP 212.47 212.26 207.97 208.62 209.92
TT 203.74 202.15 196.71 197.39 199.62

NT 212.76 212.50 208.37 209.05 210.37
(Slowinski and Weglarz 1989)

Longest
Processing
Time

Early
Start
Time

Late
Start
Time

Minimum
slack

Most im-
mediate
successors

234.72 231.13 249.49 221.81 226.11

6 Conclusion

In complex and uncertain projects, the assumption of deterministic project structure
is not always valid. To deal with this gap between research and practice, the RCPSP-AS
has been developed. In this paper, we find single schedules for the RCPSP-AS employing
PRs from the literature. We conclude that employing a specific PR for the selection and
scheduling subproblem separately reduces the project makespan dramatically in compari-
son to using a single PR for both subproblems.

References

Blazewicz J., J. K. Lenstra and A.R. Kan, 1983, "Scheduling subject to resource constraints:
classification and complexity", Discrete applied mathematics, 5(1), pp. 11-24.

Capacho L., R. Pastor, A. Dolgui and O. Guschinskaya, 2009, "An evaluation of constructive
heuristic methods for solving the alternative subgraphs assembly line balancing problem",
Journal of Heuristics, 15(2), pp.109-132.

Capek R., P. Šucha and Z. Hanzálek, 2012, "Production scheduling with alternative process plans",
European Journal of Operational Research, 217(2), pp.300-311.

Cooper D.F., 1976, "Heuristics for scheduling resource-constrained projects: An experimental in-
vestigation", Management Science, 22(11), pp. 1186-1194.

Kolisch R., S. Hartmann, 1999, "Heuristic algorithms for the resource-constrained project schedul-
ing problem: Classification and computational analysis", In Project scheduling pp. 147-178.
Springer, Boston, MA.

Kolisch R., S. Hartmann, 2006, "Experimental investigation of heuristics for resource-constrained
project scheduling: An update.", European journal of operational research, 174(1), pp. 23-37.

Servranckx T., M. Vanhoucke, 2019, "A tabu search procedure for the resource-constrained project
scheduling problem with alternative subgraphs", European Journal of Operational Research,
273(3), pp. 841-860.

Slowinski R., J. Weglarz, 1989, "Heuristic algorithms for resource constrained project scheduling:
A review and an empirical analysis", In Advances in Project Scheduling pp. 113-134. Elsevier.

1

A comparison of two project forecasting methods using

risk models: Structural Equation Modeling and

Bayesian Networks

Izel Unsal Altuncan1, Mario Vanhoucke1,2,3 and Annelies Martens1

1 Ghent University, Belgium
izel.unsalaltuncan@ugent.be

annelies.martens@ugent.be

2 Vlerick Business School, Belgium
3 University College London,UK

mario.vanhoucke@ugent.be

Keywords: Risk modelling, Project forecasting, Project simulation

1 Introduction

Project risks are controlled in literature as if they arise independently during project
execution. However in practice, project risks often arise as dependent events. Therefore,
in order to assure effective control of project risks, the hidden structure consisting of
causal paths between interrelated risks should be identified. In addition to the qualitative
knowledge on the causal interrelations, quantitative information on the level of causality
is also required to completely exploit the benefits of the causal structure between project
risks. Recently, directed networks consisting of quantitative parameters to represent the
level of causal interaction between risks, the so-called risk models, have been receiving
attention within the field of project management.

Risk models have been frequently used for risk analysis and risk response planning in
project management for the last two decades, however, only a limited number of research
papers have focused on using risk models for project forecasting. The way risk models
predict project duration and cost is fundamentally different from the existing Earned Value
Management (EVM) method. While EVM is based on periodic performance measurement
during project progress, risk models only make use of static project data which can be
obtained prior to the start of the project (i.e. activity network, sensitivity measures). Since
no research has been explicitly conducted on project forecasting through risk models using
a variety of project data, the applicability and effectiveness for forecasting is still vague. To
the best of our knowledge, two causal modelling methods have been used in literature for
forecasting project duration and cost, namely Structural Equation Modeling (SEM) and
Bayesian Networks (BN). The goal of this paper lies in comparing the forecasting accuracy
of the two methods using a large variety of project data. The outline of this manuscript is
as follows. In Section 2 we briefly discuss the general approach consisting of three phases
and provide details for the methodology framework of each phase. In Section 3 we discuss
the general accuracy of the models for various test data settings. Finally in Section 4 we
briefly discuss the planned future work.

2 General approach

SEM is an approach for linear modelling consisting of measurement models and a struc-
tural model, while BN is an approach for probabilistic inference through a single model.
Since the methods are fundamentally different from each other we propose a specific ap-

2

proach which is explicitly designed for comparing the two methods using the same dataset,
through identical topological structures.

The computational experiment is applied in four phases as displayed in Figure 1. In
Phase 1, we propose a theoretical risk model based on background knowledge in project
management. In Phase 2, we generate a variety of artificial projects and collect available
empirical project data. In Phase 3, we train and test the theoretical risk model of Phase 1,
using the artificial and empirical project data of Phase 2. Model training in this research
refers to validating the theoretical model and determining the optimal parameter set using
k-fold cross validation, while model testing refers to making use of the optimal model for
forecasting project duration. Finally in Phase 4, we compare the forecasting accuracy of
the SEM and the BN for different training data. In the remainder of this section we briefly
discuss the highlights of each phase.

Theoretical risk model

Data generation
-Artificial
-Empirical

Performance evaluation
(using MAPE)

Phase 1

Phase 2

Model training and testing

-Data splitting (Training set+ Test set)
-Model generation (using training sets)

-Forecasting (using test sets)

Phase 3

Phase 4

Fig. 1. General framework

Phase 1 Theoretical model: Since risk variables within the SEM approach are con-
sidered to be not directly measurable, in the theoretical model of this research given in
Figure 2, we propose observable indicators (represented by rectangles) for measuring risk
variables (represented by ellipses). The network topology (NT), time sensitivity (TS) and
cost sensitivity (CS) measures of a project are proposed to affect the time performance
(TP) and the cost performance (CP). In order to cover all aspects, time and cost sensitiv-
ity are modelled in terms of the standard deviation (TSstd and CSstd) and the average
(TSav and CSav).

Phase 2 Data generation: For empirical data, 29 projects are collected from an
open source database from Batselier and Vanhoucke (2015). For artificial data, 900 project
networks presented in Vanhoucke (2010a) are simulated under 9 different scenarios, by
making use of different distributions for activity durations. Projects are simulated in two
parts: static simulation and dynamic simulation. The static simulation aims at estimating
the project performance prior to the start using sensitivity metrics, while the dynamic
simulation aims at imitating the actual project progress and obtains the real duration, the

3

TSstd

NT
LA

SP

CI

AD

TF

SI
SSI

CRI1
CRI2
CRI3

TSav

CI
SI

SSI
CRI1
CRI2
CRI3

CSstd
CRI3

CRI1

CRI2

CSav
CRI3

CRI1

CRI2

TP

CP

SPI(t)

CPI

Standard
deviation

Average

Standard
deviation

Average

Fig. 2. Theoretical model

real cost, and thus the actual time performance (SPI(t)) and the actual cost performance
(CPI).

Phase 3 Model training and testing: First, the artificial data (900 x 9 = 8100
simulated projects in total) is split into training set and test set. Then, artificial and
empirical risk models are generated for the SEM and the BN, making use of the the
observable indicator values obtained through both static simulations (sensitivity metrics)
and dynamic simulations (SPI(t) and CPI) for the projects in the artificial training set
and obtained through real-life project data for the projects in the empirical set. Once the
risk models with optimal parameter sets are determined, we make use of the models for
forecasting the time performance of projects using the network topology and sensitivity
metrics in the artificial test set as input data.

Phase 4 Evaluation: In this phase, the resulting forecasts of the SEM and the BN are
compared to the actual SPI(t) values for the projects in the test sets. Forecasting accuracy
is measured using the Mean Absolute Percentage Error (MAPE), where the lower MAPE
indicates a better forecasting performance.

3 Preliminary results

Overall, the relatively low MAPEs indicate that both the SEM and the BN are notable
alternatives for forecasting project duration. The general results are as follows:

– The Length of Arcs (LA) and the Topological Float (TF) are excluded from the risk
models since they are considered to be not strongly correlated with the network topol-
ogy (NT) for forecasting both the time performance (TP) and the cost performance
(CP). This is in line with the previous discussions which claim that only SP and AD
have a significant influence on the forecasting accuracy (Vanhoucke (2010a)).

– Only the Schedule Sensitivity Index (SSI) and the Cruciality Index (CRI) are con-
sidered as explicit observable indicators for the time sensitivity. This is in line with
the discussions in Vanhoucke (2010b) which confirms the further effectiveness of these
metrics over the Criticality index (CI) and the Significance Index (SI).

– As given in Figure 3, the forecasting accuracy of the BN is better than SEM, regardless
of the type of the training data. More specifically, when the artificial data is used for

4

model training, MAPE values for the BN are 7.19% lower on average, and when the
empirical data is used for model training, MAPE values of the BN are 4.08% lower on
average.

15.13%

10.50%

7.94%
6.42%

0.00%

5.00%

10.00%

15.00%

20.00%

Artificial data Empirical data

M
A
PE

Training data
SEM BN

Fig. 3. Average MAPE for different training data

4 Future research

There are two future research intentions. First, we will investigate the impact of test
project characteristics on the accuracy of the SEM and the BN. Second, we will compare
the forecasting accuracy of the SEM and BN to the EVM methods.

References

Batselier, J. and Vanhoucke, M., 2015, Construction and evaluation framework for a real-life
project database, International Journal of Project Management, 33:697-710.

Gupta, S. and Kim, H. W. , 2008, Linking structural equation modelling to Bayesian networks: De-
cision support for customer retention in virtual communities, European Journal of Operational
Research, 190:818-833.

Vanhoucke M., 2010a, Measuring time: Improving project performance using earned value manage-
ment, volume 136 of International Series in Operations Research and Management Science,
Springer.

Vanhoucke, M., 2010b, Using activity sensitivity and network topology information to monitor
project time performance, Omega,38, 359-370.

Vanhoucke M., 2012, Project Management with Dynamic Scheduling, Springer.

1

Using schedule risk analysis with resource constraints

for project control

Jie Song1, Annelies Martens1 and Mario Vanhoucke1,2,3

1 Faculty of Economics and Business Administration, Ghent University, Belgium
jieson.song@ugent.be, annelies.martens@ugent.be, mario.vanhoucke@ugent.be

2 Technology and Operations Management, Vlerick Business School, Belgium
3 UCL School of Management, University College London, United Kingdom

Keywords: Project Management, Project Control, Resource-constrained, Schedule Risk
Analysis.

1 Introduction

Schedule Risk Analysis (SRA) has shown to provide reliable activity sensitivity infor-
mation for taking corrective actions during project control. More precisely, by selecting
a small subset of activities with high sensitivity values for taking corrective actions, the
project outcome can be improved. In resource-constrained projects, disrupted activities can
affect both their successors as well as other activities when resource conflicts are induced.
Since SRA focuses solely on the project network to determine the sensitivity of activities,
the traditional SRA metrics do not accurately reflect the activity sensitivity for resource
constrained projects. In this paper, we extend the traditional SRA metrics to be adequate
for resource constrained projects and a novel resource-based sensitivity metric is proposed.
These metrics are referred to as resource constrained SRA metrics (RC-SRA). An extensive
computational experiment is established to analyse the impact of constrained resources on
the efficiency of the risk analysis and project control phase. In particular, two activity
selection strategies to determine which activities should be taken corrective actions on are
compared. Finally, the efficiency of two types of corrective actions will be reviewed.

2 Problem formulation

Schedule risk analysis (SRA) is a project management technique to analyze the risk of
the baseline schedule. More precisely, uncertainty is added to the project by using activity
duration distribution and Monte Carlo simulations. This activity uncertainty might affect
the probability of activities being on the critical path (activity criticality) and might affect
the project outcome (impact of activity uncertainty). Although both aspects are often
discussed separately, the sensitivity of an activity is defined by the combination of them.
Therefore, these three aspects are discussed independently along the following lines.

Probability of activity criticality. The criticality index (CI), introduced by Martin (1965),
gives an indication of the probability that an activity lies on the critical path. It is a simple
and straightforward metric, which has been widely studied in literature. Although the CI
has been studied widely, it often fails in accurately identifying the weaknesses of the project,
since it does not consider the impact of activity uncertainty on the project outcome.

Impact of activity uncertainty. To consider the impact of activity uncertainty on the
project outcome, Williams (1992) proposes the significance index (SI) and the cruciality
index (CRI). The SI is an indicator for the impact of activity uncertainty on the project
duration and can be used to reflect the relative importance between project activities.
The CRI measures the correlation between the activity durations and the final project
duration. While the CRI only measures the linear relationship between the activity duration

2

and project duration, Cho and Yum (1997) propose that the relation between these two
variables often follows a non-linear relation.

Combination of probability and impact. The risk of an activity is accurately measured by
considering both the probability of activity criticality and impact of activity uncertainty.
The schedule sensitivity index (SSI) is proposed to combine the standard deviation of the
activity duration and the project duration (S

di

and S
Cmax

) with the CI, which is exactly
a merge of the impact of uncertainty and the probability of activity criticality (PMBOK
2004). Ballesteros-Perez et. al. (2019) put forward the Criticality-Slack-Sensitivity (CSS)
index, which is a refinement of the SSI metric and show that the CSS performs better than
the existing activity sensitivity metrics in the literature.

Current study. The SRA metrics provide an indication of the sensitivity of project ac-
tivities based on a network analysis. Hence, it is assumed that delays in an activity only
affects its successors. In resource constrained projects, delays in activities do not only af-
fect succeeding activities, but can also delay other activities when resource conflicts are
induced. In this case, the traditional SRA metrics might not accurately indicate the actual
sensitivity of the activities. Therefore, in this paper, SRA metrics for resource constrained
projects (RC-SRA metrics) are proposed and evaluated. As Fig. 1 shows, the traditional
SRA metrics for measuring the probability of criticality, the impact of activity uncertainty
and a combination of the probability and impact are extended to the resource constrained
project context. For a detailed discussion on RC-SRA metrics, we refer to the work of Song
et. al. (2021). Second, to validate whether the RC-SRA metrics indicate the sensitivity of
activities more accurately in a resource constrained project context, an extensive compu-
tational experiment is conducted. In the first experiment, two activity selection strategies
to determine which activities should be taken corrective actions on are evaluated. Finally,
the impact of two different types of corrective actions for resource constrained projects are
compared.

CPM RCP

Probability of activity criticality CI (Martin, 1965)
Based on critical path

RCI
Based on critical chain

Impact of activity uncertainty SI (Wiliams, 1992)
Based on earliest start schedule
(ESS)

RSI
Based on resource feasible schedule

Combination of probability and
impact

CRI (Wiliams, 1992)
Connection activity duration
and project duration

SSI (PMBOK, 2004)
Using CI

RSSI
Using RCI

Impact of constrained resources Novel metric: RRUI

extension

extension

extension

Fig. 1. Comparison of SRA and RC-SRA metrics

3

3 Methodology

3.1 Data generation

In order to test the impact of RC-SRA metrics on the project control process, a large set
of fictitious projects with the well-considered topological network structure and resource
constraindness is generated by a project network generator RanGen2 (Vanhoucke et. al.

2008). First, the topological structure of these fictitious project networks are indicated
with the serial/parallel (SP) indicator, which takes a value in [0, 1]. Second, the resource
constraindness (RC) measures the average resource amount of a resource type consumed
by all the activities divided by the limited availability of this resource type, and the RC
indicator takes a value in [0, 1] as well. In the experiment, each combined SP-value (0.2,
0.4, 0.6, 0.8) and RC-value (0.2, 0.4, 0.6, 0.8) contains 100 projects. As a consequence,
1,600 (= 4⇥ 4⇥ 100) projects are generated and tested in the experiment.

3.2 Resource-constrained schedule risk analysis

RC-SRA consists of three steps, namely constructing a resource-feasible baseline sched-
ule, running simulation for the project network, and measuring the sensitivity values of
each activity, which is in line with traditional SRA. Subsequently, the result of the simula-
tion runs is that each activity has a value for the sensitivity metrics. In order to simulate
uncertain activity durations, Monte Carlo simulations are deployed to generate the real
activity duration with the presence of uncertainty. A lognormal distribution that is skewed
to the right is employed to model the actual activity duration using two shape parameters,
with µ = 1.1 and � = 0.3 (Martens and Vanhoucke 2019, Hu et. al. 2016).

3.3 Simulation run with corrective actions

During project execution, the project manager should select the activities for correc-
tive actions and decide which type of corrective actions should be taken on the selected
activities,

Activity selection strategies. To select activites for actions, two distinct strategies can
be applied. First, a normal strategy (NS) adopts the traditional view on determining a
small subset of activities for taking corrective actions (Vanhoucke 2010), i.e. a subset of
most sensitive activities is selected at each tracking period. Second, a sequential strategy

(SS) focuses on the highly sensitive activities, but only the activities for which actions lead
to a makespan reduction are selected, while the other highly sensitive activities are not
taken into further consideration.

Types of corrective actions. In a resource-feasible RCPSP schedule, two types of activity
crashing are distinguished, with the aim of reducing the duration or the resource demand of
the selected activities. The first type deploys the traditional viewpoint on activity crashing.
In order to reduce the activity duration, the project manager invests additional resources
to crash the selected activity. The second type can be viewed as a slightly adapted version
of the traditional activity crashing. Instead of reducing the activity duration, the resource
demand is decreased which results in increased activity duration.

4 Results

The crashing effectiveness (CE) is measured as a ratio between the reduction in project
delays due to corrective actions (Delayno � Delayyes) and total delay before corrective
actions (Delayno) along the project progress (Eq. (1)). This metric measures the extent of

4

project delays that has been reduced by taking corrective actions.

Crashing effectiveness =
1

nrs
l

nrslX

I=1

(
Delayno �Delayyes

Delayno
) (1)

With Delayno = RDno � PD, and Delayyes = RDyes � PD, nrs
l

, number of delayed
projects in the simulation. The PD is the planned duration of the project. RDno and RDyes

are the project duration obtained from the simulated project execution without and with
effort.

First, the results show that the crashing effectiveness of the RSSI measure (10.47%, on
average) is relatively higher than the RCI (9.32%), RSI (8.80%) and CRI (9.62%). Further,
the SSI performs as effective as the RSSI measure when the RC is low. Since the lower
RC values indicate that the resources are less restricted, the SSI can still provide useful
activity sensitivity information for taking corrective actions during the project tracking
process. Consequently, the SSI does not lose its initial value when the availability of re-
sources is high. However, when the RC values increase, the crashing effectiveness of the
RSSI approach is relatively higher (i.e. 8.01% vs. 5.40%) than the SSI measure. Thus, in-
corporating constrained resources in the RC-SRA metrics helps improve the accuracy of
corrective actions in projects with more restricted resources during project tracking.

Second, the results show that, on average, the use of the sequential strategy results in
a better crashing effectiveness. More precisely, the crashing effectiveness of the sequential
strategy is particularly better than the normal strategy for parallel projects, while the
difference is marginal for serial projects. This is due to the fact that the resources or
precedence conflicts are more likely to occur in parallel projects during project tracking.
The results also reveal that, on average, the crashing effectiveness is higher when the first
type of corrective actions are used.

References

Ballesteros-Pérez P., K. M. Elamrousy and M. C. González-Cruz, 2019 “Non-linear time-cost trade-
off models of activity crashing: Application to construction scheduling and project compression
with fast-tracking", Automation in Construction, Vol. 97, pp. 229-240.

Cho J.G., B.J. Yum, 1997, “An uncertainty importance measure of activities in PERT networks",
International Journal of Production Research, Vol. 35, pp. 2737-2758.

Hu X., N. Cui, E. Demeulemeester and L. Bie, 2016, “Incorporation of activity sensitivity measures
into buffer management to manage project schedule risk", European Journal of Operational
Research, Vol. 249, pp. 717-727.

Martens A., M. Vanhoucke, 2019, “The impact of applying effort to reduce activity uncertainty
on the project time and cost performance", European Journal Of Operational Research, Vol.
277, pp. 442-453.

Martin J.J., 1965, “Distribution of the time through a directed, acyclic network", Operations
Research, Vol. 13, pp. 46-66.

PMBOK., 2004, “A Guide to the Project Management Body of Knowledge, Third Edition", New-
town Square, Pa.: Project Management Institute, Inc.

Song J., A. Martens and M. Vanhoucke, 2021, “Using schedule risk analysis with resource con-
straints for project control", European Journal of Operational Research, Vol. 288, pp. 736-752.

Vanhoucke M., J. Coelho, D. Debels, B. Maenhout and L. Tavares, 2008, “An evaluation of the
adequacy of project network generators with systematically sampled networks", European
Journal of Operational Research, Vol. 187, pp. 511-524.

Vanhoucke M., 2010, “Using activity sensitivity and network topology information to monitor
project time performance", Omega The International Journal of Management Science, Vol.
01, pp. 1-5.

Williams T.M., 1992, “Criticality in stochastic networks", Journal of the Operational Research
Society, Vol. 43, pp. 353-357.

1

Project Planning for Engineering Automotive
Production Systems

Maximilian Kolter, Martin Grunow, Rainer Kolisch and Thomas Stäblein

TUM School of Management, Technichal University Munich, Germany
max.kolter@tum.de, martin.grunow@tum.de, rainer.kolisch@tum.de,

thomas.staeblein@tum.de

Keywords: resource leveling, multi-project scheduling, outsourcing, external resources.

1 Introduction

In the automotive industry, there is a trend of growing product portfolios and decreas-
ing product life cycles (Dusan et al. 2019). This trend results in a large number of new
product introductions, for which not only new cars have to be engineered but also new
production systems. The engineering of production systems are projects which serve the
development of new production systems and consist of various engineering activities such
as production equipment planning or layout planning. Car manufacturers need to cope
with multiple overlapping production system engineering projects with short development
times. However, they only have a limited workforce of engineers and thus rely on outsourc-
ing to handle the increasing workload. Furthermore, a major European car manufacturer
brought to our attention that there are strategic efforts to reduce the number of internal
engineers despite this growing demand. Consequently, car manufacturers face the problem
of scheduling their production system engineering projects such they make the best use
of scarce internal engineers and use outsourcing in a targeted and sensible manner. This
study aims to address this problem by developing a framework to schedule production sys-
tem engineering projects such that internal engineers are utilized efficiently and outsourced
activities are combined into attractive work packages for contractors.

The remainder of this paper is organized as follows: In Section 2, we formally define
the problem. Next, in Section 3, we provide a brief literature review. Then in Section 4,
we propose a mixed-integer programming formulation for the problem. Finally, in Section
5, we discuss some preliminary results.

2 Problem Definition

Each project p ∈ P depicts the engineering of a production system. All projects have to
be scheduled within the discrete planning horizon T consisting of periods 1 to T. In order
to start engineering the production system for a new car, a certain product development
status of the car to be manufactured is required. We assume that the time this status
is achieved is known and represents the release date for a project. The deadline of each
project is dictated by the planned start-of-production (SOP), which aligns with the market
introduction of the product. Each project p is associated with a set of engineering activities
(e.g., layout planning, assembly planning) represented by Vp.

The activities must be processed according to finish-to-start precedence relations that
are represented by the set of arcs (i, j) ∈ E . For processing activities, engineers with
different skills (e.g., layout planner or assembly planner) are available. The set R denotes
the different types of resources according to their skill. Each activity j requires exactly one
specific skill k ∈ R for being processed and rjk denotes the number of resources with skill k
required during each period activity j is processed. Furthermore, activities can be processed

2

in two different modes m ∈ M. Mode m = 0 to process an activity with internal resources
and mode m = 1 to process activities with external resources (outsourcing). Each activity
j must be processed in exactly one mode m ∈ M for a (mode-independent) duration of
pj . However, for reasons such as intellectual property protection, some activities must be
processed with internal resources. We denote the modes allowed for activity j by Mj .

The available number of internal engineers limits the number of activities processed
with internal resources. We assume that a maximum of bkt internal engineers with skill k is
available in period t. Additionally, to account for the strategic goal of decreasing the size of
the internal workforce, we assume the management prescribes a maximum bt <

∑
k∈R bkt

for the size of the internal workforce (number of all engineers) for every period t.
The objective is to find a feasible schedule for the projects p ∈ P that first seeks to

maximize the use of internal resources and second creates schedules for the outsourced
work that are attractive for contractors. We define the attractiveness of work packages for
contractors as follows. Work packages are more attractive if they (i) consist of consecutive
activities with few interruptions, (ii) have small peaks in the resource requirements, and
(iii) have little variance in the resource requirement over time.

3 Literature Review

Three streams of literature are relevant to the problem presented in Section 2. The
first stream concerns the engineering of production systems and provides many qualitative
insights and quantitative models for single engineering activities (see Heragu (2018)). How-
ever, this stream does not provide quantitative methods for the scheduling of the required
engineering activities. The second stream concerns the resource leveling problem (RLP);
for an extensive overview see Rieck and Zimmermann (2015). The problem subject to this
study is close to two classical RLP variants. The objective of minimizing outsourcing is
similar to the overload RLP (Kreter et al. 2014) and the objective of creating attractive
outsourcing packages is similar to the total adjustment cost RLP (Rieck et al. 2012). The
third stream of literature deals with project scheduling considering outsourcing. Only a
few papers consider outsourcing in project scheduling, for instance Heimerl and Kolisch
(2010). However, to the best of our knowledge, no model exists that addresses the creation
of attractive outsourcing packages. However, we argue that attractive outsourcing packages
are highly relevant for practical applications since they lead to smaller outsourcing costs.

4 Model Formulation

In this section, we present a MIP for the problem. The decision variables are summarized
in Table 1. The proposed MIP is based on the multi-mode resource constrained project
scheduling problem (MRCPSP) (Weglarz et al. 2011). For the scheduling decisions, we use
step variables xjmt, which are binary variables that take the value 1 if and only if activity
j is started in or before period t in mode m (Artigues et al. 2015). We assume that prior
to optimization for each activity j the earliest start times ESj are computed using the
duration and release dates and latest start times LSj are computed using the duration and
SOPs (deadlines). To reduce the number of variables, we only define step variables for the
feasible starting times as specified by the interval [ESj , LSj].

The MIP has three lexicographic objectives. The first objective (1) seeks to maximize
the utilization of the internal workforce by minimizing the outsourced work. Objectives (2)
and (3) seek to generate attractive outsourcing packages by smoothing resource demand
profiles for the outsourced work. For this purpose, objective (2) minimizes the peak volume

3

Table 1: Summary of decision variables
Discrete Variables
ukt Number of internal resources k utilized in period t
xjmt 1, if activity j is started in mode m before or in the beginning of period t, 0

otherwise
Continuous Variables
zkt Amount of outsourced work requiring resource k in period t
z+kt, z

−
kt Positive and negative change of outsourcing volume of work requiring resource

k from period t− 1 to t
zmax
k Peak volume of outsourced work requiring resource k

of the outsourced work and objective (3) minimizes changes in the outsourcing volume over
time.

min v1 =
∑

k∈R

∑

t∈T
zkt (1)

min v2 =
∑

k∈R
zmax
k (2)

min v3 =
∑

k∈R

∑

t∈T
(z+kt + z−kt) (3)

While optimizing (1) - (3), the following constraints have to be considered. The first
block of constraints (4) - (6) defines the scheduling process. Constraints (4) ensure that
each activity is scheduled exactly once in exactly one mode. Thereby, the start and finish
of activities must adhere to finish-start precedence relations between activities as defined
in constraint (5). Furthermore, constraints (6) ensure that once started, activities are not
interrupted (no preemption).

s.t.
∑

m∈Mj

∑

t∈T \{1}

(xjmt − xjm,t−1) = 1 ∀j ∈ V (4)

∑

m∈Mj

xjmt ≤
∑

m∈Mi

xim,t−pi ∀(i, j) ∈ E , t ∈ T : t > pi (5)

xjm,t−1 ≤ xjmt ∀j ∈ V , m ∈ Mj , t ∈ T \ {1} (6)

The second block of constraints (7) - (12) defines the resource allocation. First, the
internal processing of activities is limited by the number of internal engineers with skill
k in constraints (7). For each internal resource k the number of required units has to
be within the available capacity as defined in constraints (8) and (9). Work that exceeds
this internal capacity must be outsourced. The volume of outsourced work is computed in
(10). Subsequently, the peak of outsourced work and the changes in outsourcing volume
over time are computed in constraints (11) and (12), respectively. Note, variable definition
constraints are omitted for the sake of space.

∑

j∈Vk

rjk(xj0t − xj0,t−pj) ≤ ukt ∀k ∈ R, t ∈ T : t > pj (7)

ukt ≤ bkt ∀k ∈ R, t ∈ T (8)

4

∑

k∈R
ukt ≤ bt ∀t ∈ T (9)

∑

j∈Vk

rjk(xj1t − xj1,t−pj)− zkt = 0 ∀k ∈ R, t ∈ T : t > pj (10)

zkt ≤ zmax
k ∀k ∈ R, t ∈ T (11)

zkt − zkt−1 − z+kt + z−kt = 0 ∀k ∈ R, t ∈ T \ {1} (12)

5 Numerical Results

We conducted preliminary tests to evaluate the capability of off-the-shelf solvers to
solve MIP (1) - (12). For this purpose, we randomly generated projects, activities, and
precedence relationships. We considered between 1 and 3 projects, 10 and 20 non-dummy
activities per project, and 1 and 3 resources (18 instances total). We implemented the
model in Python and solved it with Gurobi version 9.1. We solve the objectives (1) - (3)
lexicographically in the order given. The experiments were performed on an Intel Core
i5-7200U CPU 2.50GHz with 16 gigabytes of RAM under Windows 10 64-bit operation
system. The CPU time limit was set to 3,600 seconds for each objective (1), (2), and (3).

Table 2: Results
Objective Average Instances solved Average gap [%] Max gap [%]runtime [sec] to optimality [%]

(1) 162 100.00 0.00 0.00
(2) 1,057 72.22 3.61 25.00
(3) 1,656 61.11 10.78 47.99

Table 2 reports the computational results. Considering that not all of these small in-
stances could be solved optimal, finding optimal solutions for realistic instance sizes requires
a more tailored solution approach. We are currently working on a decomposition approach
that will be presented at the conference. Additionally, we will present an extensive compu-
tational study as well as a case study using real-world data.

References

Artigues C., O. Kone, P. Lopez, M. Mongeau, 2015, “Mixed-Integer Linear Programming Formu-
lations", in Schwindt C., J. Zimmermann Handbook on Project Management and Scheduling,
Switzerland, Springer International Publishing, pp. 17-41.

Dusan S., M. Molnar and G. Fedorko, 2019, “Shortening of Life Cycle and Complexity Impact on
the Automotive Industry", TEM Journal, Vol. 8(4), pp. 1295-1301.

Heimerl C., R. Kolisch, 2010, “Scheduling and staffing multiple projects with a multi-skilled work-
force", OR Spectrum, Vol 32(2), pp. 343-368.

Heragu S.S., 2018, Facilities Design, 4th edn., CRC Press, Boca Raton.
Kreter S., J. Rieck, J. Zimmermann, 2014, “The total adjustment cost problem: Applications,

models, and solution algorithms", Journal of Scheduling, Vol 17(2), pp. 145-160.
Rieck J., J. Zimmermann, T. Gather, 2012, “Mixed-integer linear programming for resource lev-

eling problems", European Journal of Operational Research, Vol 221(1), pp. 27-37.
Rieck J., J. Zimmermann, 2015, “Exact Methods for Resource Leveling Problems", in Schwindt

C., J. Zimmermann Handbook on Project Management and Scheduling, Switzerland, Springer
International Publishing, pp. 361-387.

Weglarz J., J. Jozefowska, M. Mika, G. Waligora, 2011, “Project scheduling with finite or infinite
number of activity processing modes - A survey", European Journal of Operational Research,
Vol 208(3), pp. 177-205.

1 2

1

2

n
j pj rj

j
sP

j Cj(s) Cj(s) j s
s = (j1, . . . , jn)

Cj1(s) = rj1 + pj1 Cj
k

(s) = max(Cj
k�1(s), rjk) + pj

k

k > 1.

s

1|rj |
P

j Cj NP
1||

P
j Cj O(n log(n))

1|rj |
P

j Cj

O(n4
log(n))

O(wn3
log(n)) w

w = 1

1|rj |
P

j Cj

'✓

� h
1|rj |

P
j Cj � e

1||
P

j Cj

Ae se � e

sh � h p̂j j
� e pj � h

� h

1|rj |
P

j Cj

'✓ � e � h

('✓)✓

✓ ✓

1|rj |
P

j Cj

'✓

'✓ � h � e
1||

P
j Cj

se � h

O(n log(n))
� h se

j k j ! k pj > pk t j
rj , rk  t j k

O(n2
) si

p̂j
j � e O(n4

log(n))
O(n4

log(n))

m
✓k 2 Rd ✓ � h m

� e
1 , . . . ,�

e
m

� e
i = '✓

k

(� h
)

✓k = ✓ + zk zk Z Rd

✓
m ✓k ✓ k � e

k � e

k sek

k0 < k k + 1

sik
O(mn4

log(n))

� h
1|rj |

P
j Cj

n 2 {120, 140, 160, 180, 200, 300, 500,
1000, 1500, 2000, 2500} pj

[1; 100] rj
[1; 50.5⇥n⇥⇢] ⇢

⇢ 2 {0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0}
n ⇢ 30

� h

120

n 120

n
Tavg Tmax

�avg �max

�

� = 100.00⇥
P

j

C
j

(H)�
P

j

CBNS

jP
j

CBNS

j

P
j Cj(H) H

P
j C

BNS
j

minH2X(

P
j Cj(H)) X

� h

n = 300 120

2000

300

120

n �

avg

(%) �

max

(%) T

avg

T

max

�

avg

(%) �

max

(%) T

avg

T

max

�

avg

(%) �

max

(%) T

avg

T

max

120
140
160
180
200
300
500
1000
1500
2000
2500

n �

avg

(%) �

max

(%) T

avg

T

max

�

avg

(%) �

max

(%) T

avg

T

max

�

avg

(%) �

max

(%) T

avg

T

max

120
140
160
180
200
300
500
1000
1500
2000
2500

1 1,2,3 1,4

1

2

3

4

Fitnessind =
1

T

TX

ins=1

Objins

Fitnessind
T Objins

ins

Fitnessind =
1

T

TX

ins=1

Objins �Refins
Refins

Refins ins

1

A comparative analysis for bounding the project completion

time distribution in stochastic project networks

Forough Vaseghi1, Annelies Martens1 and Mario Vanhoucke1,2,3

1 Faculty of Economics and Business Administration, Ghent University, Gent 9000, Belgium
Forough.Vaseghi, Annelies.Martens @ugent.be

2 Technology and Operations Management, Vlerick Business School, Gent 9000, Belgium
3 UCL School of Management, University College London, London, United Kingdom

Mario.Vanhoucke@ugent.be

Keywords: Project Risk Analysis, Continuous Probability Distributions, Stochastic Activity Net-
work.

1 Introduction

A project network consists of activities between which precedence relations exist. The duration
of these activities is not deterministic, but varies due to the presence of risk and uncertainty. When
the stochastic nature of activity durations is neglected, the expected project duration is underesti-
mated. To solve this problem, stochastic activity networks (SAN) with variable activity durations
are used to define the project completion time as a distribution rather than a deterministic value.
A SAN can be defined as a directed acyclic graph-DAG, in which each of the activities’ duration
follows a pre-defined distribution. A DAG is a series-parallel graph (SP-graph) when its complexity
index (CI) is equal to zero. This means that, to convert the graph to one node, we only need a
sequence of convolution and product operators. Many project networks, however, have a CI higher
than zero, meaning that they cannot be reduced to a single node using only series and parallel
reductions (Sahner and Trivedi 1987). For these project networks, computing the exact makespan
distribution is a #p-complete problem. As a results, many research efforts have focused on devel-
oping approximation methods to obtain lower and upper bounds for the makespan distribution,
with a lower (upper) bound for the makespan distribution having a cdf which is higher than (lower
than) or equal to the actual makespan cdf for each completion time t. The common idea in these
studies is to transform the given network into a SP-graph for which the makespan distribution can
be computed more easily. In SP graphs, if activity durations are stochastically independent, the
project distribution can be obtained by creating the decomposition tree of the graph and taking
the convolution and product of the distributions of the sons of a series nodes and parallel nodes,
respectively. The goal of this study is to combine the tightest lower and upper bound methods
such that the area between both bounds is minimized, meaning that the possible area in which the
actual project completion distribution is situated is as low as possible. To this extent, the impact
of the network complexity and structure on the quality of the considered bounding methods will
be investigated for different types of activity duration distributions.

2 Literature review

Many methods have been used over the last decades to compute and evaluate the project
completion time and makespan distribution of project, which can be classified into exact meth-
ods, alternative analytical approaches, simulation [Van Slyke (1963)], and PERT [Malcolm et. al.
(1959)]. Some researchers have used exact methods to compute the project makespan distribution
[Hagstrom (1990) & (Schmidt and Grossmann 2000)], but using these methods is not efficient
considering the cost and time of the computation. This motivated many studies on developing
analytical approximation methods. Since this study focuses on the comparison of lower and upper
bounds, the remainder of this section will discuss these bounding methods in greater detail.

In approximation methods, the common and main idea is converting the network (DAG-
directed acyclic graph) to a SP graph. Kleindorfer (1971) and Shogan (1977) provided lower

2

and upper bounds for the completion time distribution using recursive equations. Dodin (1985)
used a duplication process (DP) to transform the original DAG into a SP graph, which provides
an upper bound for project completion time. Spelde (1976) suggested considering all chains in the
network and using pairwise disjoint chains for computing the upper and lower bounds respectively.
Kleinoder (1982) proposed adding arcs and removing arcs to transform it into a SP graph to obtain
upper and lower bounds respectively. Colajanni et. al. (2000) used a tree-like representation to
decompose the original DAG into series or parallel subgraphs for an upper bound.

Ludwig et. al. (2001) have evaluated the methods by Kleindorfer, Dodin, and Spelde to bound
or approximate the distribution function of the makespan of stochastic project networks for ac-
tivity on arc (AOA) networks that are based on network transformations and compared each
of these distributions to the project distribution obtained by simulation to find the best bound
based on the average relative error and CPU time. In their experiments, they have considered
factors like the number of supporting points, number of activities, and type of distribution (nor-
mal/uniform/triangle/gamma). They concluded that Spelde’s heuristic procedure based on the
Central Limit Theorem provides excellent estimates at virtually no computational expense. This
approach is therefore a remarkable alternative to (computationally costly) simulation techniques
which are mostly used in practice. Further, Colajanni et. al. (2000) have compared their approach
named Tree-bound approach with the bounding methods by Shogan, Dodin, and Kleinoder for
activity on node (AON) networks and compared each of these distributions to the exact project
distribution based on the mean execution time. They claimed that none of the heuristics methods
can guarantee the best result because the accuracy is deeply related to the graph topology and
task time distribution.

As mentioned, Ludwig et. al. (2001) and Colajanni et. al. (2000) used the simulated and
exact makespan distributions to calculate the average relative error for each distribution obtained
from different bounding methods to find the distribution which is the closest one to the actual
distribution. However, they did not provide any information on the combination of best lower and
upper bounds. In our analytical experiment, we will determine the best combination of LB and UB
such that the area between LB and UB is as low as possible and the position of actual makespan
distribution is known. Since we will compare the different lower bounds and upper bounds to each
other, no simulation or exact determination of the makespan is required.

3 Experiments

In our experiments, we compare the bounding methods by Shogan, Dodin, Spelde, and the
PERT technique to find the best and tightest upper and lower bounds for determining the project
duration distribution of project networks with a CI higher than zero. For this comparison, the areas
under the makespan cumulative distribution function (cdf) will be compared. For lower bound
methods, the method with the lowest area under the distribution curve provides the tightest
lower bound for the project makespan. Similarly, for upper bound methods, the method with
the highest area under the distribution curve provides the tightest upper bound for the project
duration. The advantage of this experiment is that simulation is not required to compare different
bounding approaches. Another advantage is that the approximate position of the actual project
makespan distribution can be situated between the lower and upper bound distributions. In the
computational experiments, the bounding methods will be evaluated for different activity duration
distributions (Beta/Weibull/Gamma), and they will be tested on a large dataset with varying
values for the project network structure (SP, OS) and network complexity (CI).

4 Illustrative example and preliminary results

Let us consider the activity on node network in Fig 1 with a complexity index equal to 1 to
show how the results of bounding methods can be different. In this example, the activity durations
are assumed to be distributed lognormally and stochastically independent.

3

Fig. 1. An AON network with CI = 1 and list of activities with their means and variances.

As mentioned before, we compare the area under different LB and UB cdf curves. As shown
in Table 1, for upper bound methods, the Dodin technique (Duplication Process) has the highest
area, which corresponds to the lowest project completion ime on average (lowest stochastically).
For lower bound methods, the Spelde (pairwise disjoint) technique has the lowest area, which
corresponds to the highest project completion time on average (highest stochastically). So, these
methods provide the tightest upper and lower bounds for this stochastic project network.

Table 1. Mean, variance and area under the CDF curve of makespan distribution for upper and lower
bound methods.

Bounding methods Mean Variance Area
UB

Kleindorfer 63.718 42.097 136.275
Dodin (duplicate activity 2) 63.145 46.875 136.854
Spelde 63.695 36.906 136.304
Parallel composition of all chains 63.701 41.566 136.293

LB
Kleindorfer 62.000 49.999 138.000
PERT 62.000 48.500 138.000
Spelde (pairwise disjoint) 62.030 48.607 137.968

In Fig 2, the worst and best UB and LB for makespan distribution and the areas between them
in which the actual CDF is situated are shown. The size of this area (=area LB � area UB) is
equal to 1.7242 and 1.1139 for the left and right graphs respectively. Therefore, selecting the best
upper and lower bounds reduces the area where the actual makespan distribution can be situated.
The goal of our further experiments is to investigate what the impact of the network structure
and complexity is on the performance of the bounding methods. More precisely, we will examine
which LB and UB generally result in the lowest area, and how project network characteristics such
as the SP, OS and CI affect this performance.

4

Fig. 2. Worst and best UB and LB for makespan distribution and the areas between them.

References

Colajanni M., F. Lo Presti and S. Tucci, 2000, “A hierarchical approach for bounding the completion time
distribution of stochastic task graphs", Performance Evaluation, Vol. 41, pp. 1-22.

Dodin B., 1985, “Bounding the project completion time distribution in pert networks", Operations research,
Vol. 33(4), pp. 862-881.

Hagstrom J., 1990, “Computational complexity of pert problems", Networks, Vol. 20, pp. 231-244.
Kleindorfer G., 1971, “Bounding distributions for a stochastic acyclic network", Operations research, Vol.

19, pp. 1586-1601.
Kleinoder W., 1982, “Stochastic analysis of parallel programs for hierarchical multiprocessor systems",

PhD thesis, University of Erlangen, Nurnberg.
Ludwig R., R. Mohring and F. Stork, 2001, “A computational study on bounding the makespan distribution

in stochastic project networksounding the completion time distribution of stochastic task graphs",
Annals of Operations Research, Vol. 102, pp. 49-64.

Malcolm D.G., J.H. Roseboom, C.E. Clark and W. Fazar, 1959, “Application of a technique for a research
and development program evaluation", Operations Research, Vol. 7, pp. 646-669.

Sahner R.A., K.S. Trivedi, 1987, “Performance and reliability analysis using directed acyclic graphs",
IEEE, Vol. SE-13, pp. 1105-1114.

Schmidt C., I. Grossmann, 2000, “The exact overall time distribution of a project with uncertain task
durations", European Journal of Operational Research, Vol. 126, pp. 614-636.

Shogan A., 1977, “Bounding distributions for a stochastic pert network", Networks, Vol. 7, pp. 359-381.
Spelde H., 1976, “Stochastische Netzplane und ihre Anwendung im Baubetrieb", PhD thesis, Rheinisch-

Westfalische Technische Hochschule Aachen.
Van Slyke R.M., 1963, “Monte Carlo methods and the PERT problem", Operations Research, Vol. 11, pp.

839-860.

1

Human-centered interactions for project scheduling
decision-aid in space industry

Hugo Chevroton1, Cyril Briand1, Philippe Truillet2, Mélody Mailliez3, Céline Lemercier4

1 Université Toulouse 3 - Paul Sabatier, LAAS-CNRS
hchevroton,cbriand@laas.fr

2 Université Toulouse 3 - Paul Sabatier, IRIT
philippe.truillet@irit.fr

3 Université de Paris, LPS
melody.mailliez@parisdescartes.fr

4 Université Toulouse 2 - CLLE-LTC
celine.lemercier@univ-tlse2.fr

Keywords: scheduling, decision-aid, human machine interaction, constraint programming.

Introduction

As modern production environments tend to be increasingly complex and stressful for
production process supervisors (Khademi K. 2016), providing interactive decision support
tools (DSTs) is seen as a relevant way to help humans better organize and monitor op-
erations, in the face of production uncertainties. This organization is mainly related to
task planning and scheduling, which are very complex functions involving many decision
variables, a lot of non-trivial time and resource constraints, and a highly combinatorial
search space (Lopez P. and Roubellat F. 2013). Beyond the management of this complex-
ity, DSTs must help supervisors to cope with the occurrence of the (numerous) hazards
that appear during the execution of the production plan (quality defects, supply disrup-
tions, delays, breakdowns, etc.). Indeed, the real-time management of hazards is a major
source of cognitive and emotional load for a supervisor (Robin Morris GW. 2004) as it
implies adapting the schedule by frequently scheduling and re-scheduling production tasks
so that the production plan remains consistent with the new constraints (Mailliez M. et.
al. 2021). This is usually done in a hurry, under pressure from the hierarchy, also taking
into account the stress of the operators who undergo the changes on the production floor.

The development of efficient DSTs is a major issue in the production field, the "Human-
Machine" performances having to be taken into account in a global way. In (Peissner U.
and Parasuraman R. 2013), the authors highlight the potential of DSTs and describe the
requirements they should met. In the field of air traffic control, it is shown in (Metzger
U. and Parasuraman R. 2005) that DSTs can allow a reduction of the mental load and an
increase in the performance of the resolution of air conflicts, provided that they are reliable
and easy to use. Several authors, see e.g. (Trentesaux D., P. Millot 2016), have alarmed that
most DSTs for production supervision suffer from technocentrism: when a hazard occurs,
the algorithms propose (and sometimes even impose) a solution to the problems faced by
the decision makers, assuming that supervisors will be able to implement perfectly the
solution, whatever the situation, respecting the expected response times. Consideration of
the actual needs and capabilities of supervisors in the DST development process thus seems
to be a prerequisite for the development of usable, accepted and effective tools.

The results presented in this paper synthesize the findings of an ongoing multidisci-
plinary project taking interest in human-centered design of DSTs related to production
supervision. This work was conducted in partnership with a major French company spe-
cialized in space technologies, which provided our case study. The activity of this company

2

consists in assembling high-tech systems, each system being produced in a single unit. In-
terviews and observation campaigns with the supervisors of this company helped to under-
stand the different decision-making processes and to extract the requirements that a DST
should meet. Section 1 details the major requirements and specifies the key features that
a DST should incorporate. Section 2 focuses on the decision aspects and the benefits that
a constraint-programming (CP) approach could bring in the context of DSTs-supervisors
interaction. Conclusions and future directions are drawn in the last Section.

1 Supervisor requirements and main DST features

The observed company builds systems composed of hundreds of high-tech components
that fit together and connect to each other. Each system is specifically designed for one
customer. Its assembly generates thousands of activities, the quality of each of which must
be carefully controlled (because the system cannot be maintained once in service). The
assembly activities are all performed manually and we distinguish between several operator
skills depending on the nature of the activity. The accessibility of a specific part of the
system depends on both its physical orientation (pan/tilt) and the number of operators
already working on it The length of the project horizon commonly varies from 6 to 18
months. Expensive penalties have to be paid in case of tardiness. The schedule results from
a cooperation between several supervisors, who play the roles of both project manager and
chief-operator. Each one is in charge of the detailed schedule of a category of operators (e.g.,
mechanics, controllers, electricians) for each 8-hour shift, this schedule being dynamically
changed to react to the numerous unpredictable events that occur during the process.
There are also classical project managers having a long-term vision of the project portfolio,
from both the delay and cost viewpoints. They allocate operators to projects along the
time periods, according to the requirements of the supervisors, set-up milestones to be
met, and manage the orders passed to the suppliers. Each category of project manager
works with their own heterogeneous DSTs and (surprisingly) they are not numerically
integrated together. Hence, the need for an integrated DST is strong so that the global
consistency of the decisions can be checked easily all along the project. Project managers
are more interested in finding one feasible solution than an optimal one. They clearly
formulate the desire to keep the hand on the design of the schedule so that they can
enforced decisions at any moment (e.g., to take non-modeled knowledge into account). The
decision processes must therefore include humans in the loop and be consistent with their
way of working. Hence, a DST should be kept focus on helping decision-makers to manage
the problem complexity, quickly helping her/him to evaluate the consistency, the quality,
and the consequences of her/his decisions. Autonomous decision making is only desired if
the decision maker explicitly requests it (e.g., to automatically complete the construction
of a schedule or to react quickly to unexpected disturbances).

Another major consequence of the human-in-the-loop requirement is to give support
to help decision-makers in negotiating the constraints and finding a fair/efficient trade-
off between their possibly conflicting objectives (Briand C. et. al. 2017). It should also
support the whole project life cycle such that the various decision levels and horizons are
integrated, which means that activity/resource/time decision variables can be disaggre-
gated/aggregated into smaller/higher abstraction elements.

Another requirement is the management of disruptions that impact short-term schedul-
ing decisions. DSTs obviously need to offer features that help supervisors to both prevent
and react to disruptions. The trace and causes of the various decision changes should
be saved so that decision-makers can explain to their hierarchy the path followed by the
project and capitalize experience.

3

2 A CP-based approach

The wide variety of performance indicators, situations and decision-makers, as well as
the multi-faceted nature of the production process, make the search for an optimal solution
unnecessary. As mentioned before, the main objective is to provide decision makers with
relevant information, presented in an understandable way, in order to facilitate the coordi-
nation and negotiation of decisions. The satisfiability of constraints is obviously a relevant
property to be checked in real time. The ability to quickly compute good lower/upper
bounds on well-targeted performance indicators is also of major interest to supervisors.
In case of inconsistent constraints, providing explanations to decision makers and helping
them to recover the desired satisfiability can also be of great help. Finally, the ability to
quickly generate detailed feasible solutions is also useful.

The above features can be met in the constraint programming paradigm in which
many researchers precisely focused for decades on designing algorithms able to efficiently
prove constraint satisfiability, propagate time/resource constraints to refine variable do-
mains, or provide minimal inconsistent constraint sets (see e.g. (Ceberio M. and Kreinovich
V. 2014) for a survey) . Constraint propagation solvers now even advantageously rival
against best top-ranking MILP solvers to quickly find good-quality schedules. Eventu-
ally, distributed constraint satisfaction techniques (Fioretto, F. et. al. 2018) can be used
to negotiate constraints among a set of decision makers. The remainder of this section
discusses a CP model for our company’s project planning environment, specifically ad-
dressing how work, and resources can be disaggregated, i.e., how constraints can be settled
to link the disaggregated/aggregated decision variables all together. It shows how the spe-
cific bin_packing global constraint can be advantageously used. Such constraint links the
placement of sized/weighted items into bins and the capacity of the bins (Régin, J.C. and
Rezgui, M. 2011).

The time horizon is assumed to be modeled as a set of period T of identical length,
each period being indexed from 1 to |T | (a period corresponds to a shift in our case
study). Cumulative resources, each of them representing a set of disjunctive resources, are
distinguished. K⇤ refers to as the set of all the disjunctive resources (i.e., the set of all
operators or system states in our case study). K is the set of all the possible subsets of
resources (e.g., a subset represents a category of operators or a specific state of the system).
A subset K in K can be modeled as a cumulative resource, QK being its capacity. The
project is defined by a set of tasks J . We refer to A as the set of precedence constraints,
i.e., (j � j

0) , (j, j0) 2 A. Each task j 2 J can be decomposed into pj subtasks of duration
equals to one period. A task has to be allocated to a set of periods (Domj is the index of
periods where subtasks of j can be carried out) and a set of cumulative resources Kj 2 K.
Furthermore, each subtask of j must be assigned to a disjunctive resource belonging to K,
for each K 2 Kj and to a specific period of Domj .

The decision variable xj,i models the index of the period assigned to subtask i of task
j (j 2 J , i 2 [1, . . . , pj]). The domain Dom(xj,i) of xj,i is initialized to Domj . The value
of variable yk,t is t (t 2 T) if resource k (k 2 K

⇤) is made available at period t, else 0
(Dom(yk,t) = {0, t}). wK,t is the intensity of set of resources K 2 K) required at period t

(Dom(wK,t) = [0, . . . , QK]). w0
K,t is the capacity of resource K made available at period t

(Dom(w0
K,t) = [0, . . . , QK]). A dummy variable w

0
K,0 is defined for unused resource units

in order to keep the available capacity and the assigned capacity balanced for each K.
For all K 2 K, XK is the array of all variables xj,i with j 2 J, K 2 Kj , i 2 [1, . . . , pj].

For all K 2 K, Y K is the array of all variables yk,t with k 2 K, t 2 T . Finally, for all K 2 K,
WK (resp. W 0

K) is the array of all variables wK,t (resp. w0
K,t), such t is in {0} [T . The

CP model is presented below. Constraints (1) guarantee that two subtasks belonging to
the same task are not executed in the same period. Constraints (2) model the precedence

4

constraints. Bin-packing constraints (3) models the link between x and w variables: x are
the items to be assigned to bins w, where each w is associated with a set of resources and
a specific period. Similarly, the link between y and w

0 variables is modeled by bin-packing
constraints (4) : y are the items to be assigned to bins w0, where each item yk,t with k 2 K

has to be assigned either to bin w

0
K,0 or w0

K,t. Constraints (5) ensure that, for each period,
the number of assigned resources is higher than the resource consumption. All the above
constraints are available in modern CP solvers with their specific propagators, which can
be used together with the other solver features to check consistency, explain inconsistency,
and find efficient bounds.

xj,i < xj,i+1 8j 2 J, 8i 2 [1, . . . , pj � 1] (1)
xj,pj < xj0,1 8(j, j0) 2 A (2)

bin_packing(WK , XK) 8K 2 K (3)
bin_packing(W 0

K , YK) 8K 2 K (4)
wK,t  w

0
K,t 8K 2 K, 8t 2 T (5)

Conclusion and perspectives

The major features that a DST should include in the context of project scheduling in
space industry have been presented. A preliminary CP model has been provided in order to
support the various human-in-the-loop decision processes. It integrates resource and task
aggregation and will be updated soon to also deal with time abstraction. Concerning the
interaction scenarios, the various way of using the algorithms that check consistency on this
model, provide lower/upper bounds on performance indicators or recover consistency are
currently under study. They will be implemented to assess the real usability, acceptability
and efficiency of the proposed approach. Future research works will address the multi-agent
nature of the decision problems, as well as the negotiation mechanisms they involved.

References

Briand C, Ngueveu SU, Šůcha P. Finding an optimal Nash equilibrium to the multi-agent project
scheduling problem. J Sched. 2017 Oct;20(5):475-91.

Ceberio M. and Kreinovich V. Constraint Programming and Decision Making. Studies in Compu-
tational Intelligence 539, Springer 2014.

Fioretto, F., Pontelli, E. and Yeoh, W. Distributed constraint optimization problems and appli-
cations: A survey. Journal of Artificial Intelligence Research, 61, 623-698. 2018

Khademi K. Les processus cognitifs dans les activités d’ordonnancement en environnement incer-
tain. French Report. Psychology. Université Toulouse le Mirail - Toulouse II,2016.

Lopez P, Roubellat F. Production Scheduling. John Wiley & Sons; 2013. 384p.
Mailliez M, Battaïa O, Roy RN. Scheduling and rescheduling operations using decision sup-

port systems: Insights from emotional influences on decision-making. Frontiers in Neuroer-
gonomics.Vol. 02, 2021.

Metzger U, Parasuraman R. Automation in future air traffic management: effects of decision aid
reliability on controller performance and mental workload. Hum Factors. 2005. 47(1):35-49.

Peissner M, Hipp C. Potenziale der Mensch-Technik-Interaktion für die effiziente und vernetzte
Produktion von morgen. Fraunhofer-Verlag; 2013. 78 p.

Régin, J.C. and Rezgui, M. Discussion about constraint programming bin packing models. Work-
shops at the Twenty-Fifth AAAI Conference on Artificial Intelligence. 2011.

Robin Morris GW. The Cognitive Psychology of Planning. Taylor & Francis; 2004. 256 p.
Trentesaux D, Millot P. A human-centred design to break the myth of the “magic human” in

intelligent manufacturing systems. In: Service Orientation in Holonic and Multi-Agent Man-
ufacturing. Cham: Springer International Publishing; 2016. p. 103-13.

1

On the relevance of the makespan service level for the
flexible job shop scheduling problem under uncertainty

Mario Flores-Gómez1, Valeria Borodin1, Stéphane Dauzère-Pérès1,2

1 Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, F-42023
Saint-Etienne, France

{mario.flores, valeria.borodin, dauzere-peres}@emse.fr

2 Department of Accounting and Operations Management, BI Norwegian Business School, Oslo,
Norway

Keywords: Stochastic scheduling, Service level, Random processing times, Monte Carlo
sampling, Tabu search.

1 Introduction

The Flexible Job-shop Scheduling Problem (FJSP) is a generalization of the classical
Job-shop Scheduling Problem (JSP), that includes a set of operations partitioned into a
set of jobs. The operations in a job have to be executed in a specific order (routing) on a
set of available machines. A machine can only perform one operation at a time, and each
operation cannot be interrupted. An operation can be executed by any machine in a given
subset specific to that operation (eligible machines). The processing times can be machine-
dependent. Finding a solution to this problem is to determine both an assignment of
operations to machines, and the sequence the operations must follow on each machine, while
respecting the routing of every job. In this paper, the makespan (C

max

) is considered as a
required specification, which corresponds to the maximal completion time of all operations.

The Stochastic FJSP (SFJSP), where the processing times of operations in the ma-
chines are no longer supposed to be known, has been considerably less studied than its
deterministic version. Daniels and Carrillo (1997) define, for a single machine scheduling
problem, a �-robust schedule to model the likeliness of the total flow time across all jobs to
be no worse than a given target level. This notion is extended by Beck and Wilson (2007)
to deal with the stochastic JSP. They propose a number of techniques combining Monte
Carlo simulation with solution approaches dedicated to the deterministic JSP (e.g. con-
straint programming or tabu search). In continuation of our work in (Gómez et. al. 2021),
we extend the study on the relevance of the notion of makespan service level as defined in
(Dauzère-Pérès et. al. 2008). In Section 2, the notion of makespan service level is formalized
and our solution approach is presented, numerical results are provided and discussed in
Section 3. Conclusions and perspectives are given in Section 4.

2 Problem statement and solution approach

In this paper, processing times are considered as random variables. As a consequence,
the makespan of a sequence is also a random variable. Our goal is to maximize the prob-
ability that the makespan is lower than or equal to a given threshold T . This probability,
denoted by ↵(S, T), is known as the makespan service level associated to sequence S and
threshold T :

↵(S, T) = P(C
max

(S)  T)

To determine the service level of a sequence, a set of scenarios ⌦ is generated and
an algorithm based on Monte Carlo simulation is implemented, as described in (Gómez

2

et. al. 2021). The service level is denoted ↵(S, T,⌦). The proposed solution method is
based on a competitive tabu search approach (Dauzère-Pérès and Paulli 1997), including
a Monte Carlo sampling procedure to represent and deal with uncertainties. The results
of computational experiments as well as the outline of the proposed method can be found
in (Gómez et. al. 2021). Note that minimizing the makespan does not mean maximizing
the service level.

3 Relevance of makespan service level

In this paper, we want to show the relevance of the makespan service level with other
numerical results than the ones in (Gómez et. al. 2021). The set of scenarios ⌦ is randomly
generated according to the beta probability distribution (Marshall and Olkin 2007), by
extending the FJSP benchmark instances from Hurink et. al. (1994). In this paper, |⌦|
is set to 1,000. The processing times in the benchmark instances are set as the mean
parameter µ for every random variable used to generate the scenarios in ⌦. The standard
deviation � is expressed as a fraction of µ. The support [c, d] = [µ � 0.2µ, µ + 0.8µ] for
every random variable is also defined using µ. Let S

µ

be the sequence found by the tabu
search in Dauzère-Pérès and Paulli (1997) for mean values of random processing times.
Only the processing times of the operations in one job of the instance are considered as
random variables to generate ⌦.

Table 1. Characteristics of instances mt06, mt10 and mt20 with three lines per instance type
(edata, rdata, vdata) for each level of flexibility.

Instance |M| |J | Operations Average
C

max

(S
µ

)per job |M
i

|
1.15 55

mt06 6 6 6 2 47
3 47

1.15 881
mt10 10 10 10 2 686

5 655
1.15 1,091

mt20 5 20 5 2 1,023
2.5 1,023

3.1 Solving the FJSP for the worst-case scenario

A common practice in stochastic optimization is to use the worst-case scenario as ref-
erence to bound the problem. However, this scenario may not correspond to any of the
scenarios in ⌦, although it is a possible scenario because each scenario ! 2 ⌦ is generated
according to independent random variables (Birge and Louveaux 2011).

The theoretical and the empirical worst-case scenarios are considered. The theoretical
worst-case scenario !th

worst

(resp. !th

best

) is based on the maximum interval where the ran-
dom processing times take the value of parameter d (resp. c). In the empirical worst-case
scenario !emp

worst

(resp. !emp

best

), the value for every random processing time is the largest
(resp. smallest) realisation in ⌦. For each scenario ! 2 ⌦ and for every operation i and
every machine j (!

ij

), we have !
ij

 !emp

worst,i,j

 !th

worst,i,j

and !th

best,i,j

 !emp

best,i,j

 !
ij

.
Let:

3

– Semp

worst

(resp. Semp

best

) be the sequence determined using the tabu search in (Dauzère-
Pérès and Paulli 1997), where the makespan is minimized for the values of !emp

worst

(resp. !emp

best

),
– S⇤ be the sequence determined using the tabu search in (Gómez et. al. 2021) and ⌦,
– C

max

(S,!) be the makespan of sequence S with the processing times in scenario !.

Table 2. Makespan and makespan service level for every job from instance mt10-vdata: T = 655,
↵ = ↵(S, T,⌦)

Job S
µ

,!emp

worst

(Semp

best

,!emp

best

), (Semp

worst

,!emp

best

) S⇤, µ
C

max

(S,!) ↵ C
max

(S,!) ↵ C
max

(S,!) ↵
1 744.20 0.932 655.00, 655.93 0.050, 1 655 1
2 743.72 0.935 655.00, 655.20 0.001, 1 655 1
3 768.69 0.979 655.00, 723.74 0.805, 0 655 1
4 880.86 0.905 597.00, 834.93 0.958, 0 655 0.978
5 702.62 0.856 655.00, 655.00 0.473, 1 655 1
6 724.30 0.985 655.00, 656.00 0.002, 1 655 0.998
7 690.87 0.953 655.00, 655.56 0, 1 655 1
8 778.63 0.864 655.00, 685.93 0, 0 655 0.898
9 841.38 0.863 655.00, 748.84 0, 0 655 0.956
10 751.98 0.919 655.00, 691.99 0.761, 0 655 0.989

For the optimization problem described in Section 2, ↵(Semp

worst

, T,⌦) = 1 means that
the approach in Gómez et. al. (2021) is not necessary. However, as shown in Table 2,
this is not very common since ↵(Semp

worst

, T,⌦)  ↵(S⇤, T,⌦) for all jobs. Therefore and
as expected, solving !emp

worst

does not guarantee that a sequence with a good makespan
service level is determined. However, when the processing times of jobs 1, 2, 5, 6 or 7
are stochastic, a sequence is found that maximizes the makespan service level and with a
very competitive makespan. This could possibly mean that, even for the values in scenario
!emp

worst

, the operations in those jobs are not critical for the computation of the makespan
subject to C

max

(Semp

worst

,!)  T, 8! 2 ⌦. Further experimentation is required.

3.2 Statistical evaluation of FJSP with best-case-scenario

Let Sth

best

be the sequence determined by the tabu search in (Dauzère-Pérès and Paulli
1997), where the makespan for !th

best

is minimized. The makespan for each sequence is
computed using the processing times in its respective reference scenario.

As shown in Table 3, since 8i, 8j,

!th

best,i,j

 !emp

best,i,j

 !
µ

the average values of C
max

(Sth

best

) and C
max

(Semp

best

) are, in general, smaller than C
max

(S
µ

).
However, the dispersion of random variables and the fact that processing times that are crit-
ical to the determination of the makespan are undervalued, lead to very under-performing
solutions as shown by the average values of ↵(Semp

best

, T,⌦) and ↵(Sth

best

, T,⌦). Further ex-
perimentation is required.

4 Conclusions

We are currently improving the modeling of uncertain processing times by character-
izing industrial data. Our goal is to propose new benchmark instances based on real-life

4

Table 3. Average values of makespan and makespan service level for all instances. Three lines per
instance type (edata, rdata, vdata) for each level of flexibility: T = C

max

(S
µ

) for each instance,
↵ = ↵(S, T,⌦)

Instance Sth

best

,!th

best

Semp

best

,!emp

best

S
µ

S⇤

C
max

(S,!) ↵ C
max

(S,!) ↵ C
max

(S) ↵ ↵
53.17 0.84 53.17 0.69 55 0.88 0.91

mt06 46.50 0.61 46.51 0.21 47 0.88 0.92
45.67 0.23 45.67 0.36 47 0.93 0.99
886.43 0.42 881.78 0.21 881 0.85 0.87

mt10 684.00 0.05 684.94 0.03 686 0.80 0.89
649.20 0.26 649.20 0.30 655 0.96 0.98

1,086.75 0.73 1,086.01 0.68 1,091 0.76 0.76
mt20 1,020.00 0.09 1,019.00 0.36 1,023 0.71 0.71

1,016.00 0.20 1,016.00 0.30 1,023 0.64 0.72

observations. Moreover, a set of experiments has been designed to analyze the impact of
the cardinality of ⌦ with respect to the number of random variables in each instance, and
to exploit the information provided by Semp

best

, Sth

best

, Semp

worst

and Sth

worst

.
We are also investigating more efficient solution approaches that will not only rely

on Monte Carlo simulation. In particular, considering dominance relationships between
scenarios seems a promising research avenue.

Acknowledgements

This work was partly funded by the French Public Authorities through the Nano 2022
program, which is part of IPCEI (Important Project of Common European Interest).

References

Beck J.C. and N. Wilson, 2007, “Proactive Algorithms for Job Shop Scheduling with Probabilistic
Durations", Journal of Artificial Intelligence Research, Vol. 28, pp. 183-232.

Birge, J.R. and F. Louveaux, 2011, “The value of Information and the Stochastic Solution", In
Introduction to stochastic programming, pp. 163-180.

Daniels R.L. and J.E. Carrillo, 1997, “�-Robust scheduling for single-machines systems with un-
certain processing times", IIE Transactions, Vol. 29, pp. 977-985.

Dauzère-Pérès S. and J. Paulli, 1997, “An integrated approach for modeling and solving the gen-
eral multiprocessor job-shop scheduling problem using tabu search", Annals of Operations
Research, Vol. 70, pp. 281-306.

Dauzère-Pérès S., P. Castagliola and C. Lahlou, 2008, “Service Level in Scheduling", John Wiley
& Sons, pp. 99-121.

Flores Gómez M., V. Borodin and S. Dauzère-Pérès, 2021, “A Monte Carlo based method to
maximize the service level on the makespan in the stochastic flexible job-shop scheduling
problem", 2021 IEEE 17th International Conference on Automation Science and Engineering
(CASE) pp. 2072–2077.

Hurink J., B. Jurisch and M. Thole, 1994, “Tabu search for the job-shop scheduling problem with
multi-purpose machines", OR Spektrum, Vol.15, pp. 205-215.

Marshall A.W. and I. Olkin, 2007, “Gamma and Beta Functions", In Life Distributions, pp. 717-
727.

dp dp = dap + (1+ 0.2) ·CPpe ap
CPp p

j r
urj , urj wcrj

urj/wcrj = 0.1 urj/wcrj = 0.7

�2
UF

1 1 1,2,3

1

2

3

i i = {1, 2}
P 0
i L0

i R0
i

R0 = R0
1+R0

2

R R = µR0 0 < µ < 1
R

R0 R

Pi Li R =
P

i PiLi

Pi Li Pi  Pi  P 0
i

Li  Li  L0
i

µi µi

µ

min
(µi)

Z = Z1 + Z2 = q1 + r1 + q2 + r2

s.t. P1L1 + P2L2 = µ(R0
1 +R0

2)

min
(qi,ri)

Zi = qi + ri 8i

s.t. P 0
iL

0
i = µiR

0
i 8i

qi ri

P 0
i L0

i i
i

mi = P 0
i

P i
0

ni = L0
i

Li
0

Eq.(4)) mini = µi, 8i

m?
i n?

i

Pi, Li

0
2P

0
1P1P

2P 2Pc

1Pc

Risk reduction resulting from risk prevention for risk 1 Risk reduction resulting from risk prevention for risk 2

0

0

Risk 1

Risk 2

No dependency

0
2P

0
1P1P

2P 2Pc

1Pc0

0

1P

2P

Probability dependency

Pi = P 0
i = miP 0

i , i = 1, 2 Li = L0
i

P 0
i ! P 0

i i
R =

P
i miP 0

i L
0
i

P 0
i ! P 0

i P 0
i ! Pi

✓

Pi = (mi � ✓ +mj✓)P
0
i , j = 1, 2 & j 6= i

Eq.(2)) R0
1

R0
2

=
µ�B

A� µ

A = (m1 � ✓+m2✓)n1 B = (m2 � ✓+m1✓)n2

A = m1(n1 � ✓ + n2✓) B = m2(n2 � ✓ + n1✓)
A = (m1 � ✓ +m2✓)(n1 � ✓ + n2✓) B = (m2 � ✓ +m1✓)(n2 � ✓ + n1✓)

1

Heuristic Parameter Estimation by Machine Learning

Aykut Uzunoglu1

1Faculty of Business and Economics, Augsburg University, Germany
aykut.uzunoglu@uni-a.de

Keywords: heuristic parameters, machine learning, serial batch scheduling.

1. Introduction

Whenever NP-hard problems must be solved, heuristics are a good choice for the efficient
calculation of solutions. Some heuristics have parameters to control their behavior and the tuning of
those parameters is crucial for their performance. One example of a tunable heuristic is the Apparent
Tardiness Costs with Setups (ATCS) priority rule. This priority rule is used for scheduling different
production environments like a single machine or parallel machines with (sequence-dependent)
setup times and tardiness-related objectives. The ATCS priority rule determines an ordering for jobs
in a schedule. For that, the ATCS function uses the two look-ahead parameters 𝜅1 and 𝜅2 (Lee &
Pinedo, 1997). An extension of the ATCS heuristic, the ATCS-β heuristic, is proposed by Gahm et
al. (2021) for a serial batch scheduling problem. This heuristic uses an additional parameter 𝛽 to
control the batch utilization. In Gahm et al. (2021), the parameter tuning of 𝜅1, 𝜅2, and 𝛽 is
performed online (i.e., during the solving of a single problem instance) by a full grid search (i.e., a
multi-start heuristic is designed). Such a full grid search leads to low efficiency if the number of
parameter combinations is high. With any additional parameter, the space of parameter combinations
gets very large leading to high computation times. A naturally arising question is whether an
instance-dependent single parameter combination or a reduced grid of promising parameter
combinations (e.g., 𝜅1, 𝜅2, and 𝛽) can be defined beforehand to increase efficiency. To address this
problem, Lee & Pinedo (1997) introduced a curve-fitting approach to estimate good parameter
values offline. In contrast to online parameter tuning, offline tuning does not require a (grid) search
during the solving of a single problem instance.

In this work, a machine learning model-based estimator for the offline prediction of parameters
is presented. To that end, section 2 gives a detailed description of the scheduling problem and the
applied ATCS-based heuristics. In section 3, the learning pipeline, the model training, and the
prediction application are discussed. The results are depicted in section 4 and the conclusion in
section 5.

2. Problem Description

The serial batch scheduling problem addressed in this work is common in the metal
manufacturing industry whenever geometrical shapes (jobs) must be cut out from a large metal slide
by a (laser) cutting machine. Besides the allocation and sequencing, a batch scheduling problem
additionally has to group jobs into batches that should be processed together. In serial batching, the
batch processing time is the sum of all job processing times in a batch. The set of geometrical shapes
result from different customer orders and have different characteristics in terms of material type or
thickness, leading to incompatible job families. Because of their different characteristics, the jobs of
different families cannot be grouped in the same batch. Every job 𝑗 ∈ 𝐽 has the following properties
relevant for scheduling: area demand 𝑎𝑗 , weight 𝑤𝑗 (specifies the weight of the job tardiness on the
total tardiness), processing time 𝑝𝑗, family 𝑓𝑗 , and due date 𝑑𝑗 . Furthermore, sequence-dependent
setup times 𝑠𝑓,𝑔 (setup time from family 𝑓 to 𝑔) must be considered. The objective is the
minimization of the total weighted tardiness by considering the limited area supply of the metal slide
defined by the batch capacity 𝑏𝑐. The scheduling problem at hand can be classified as
𝑃|𝑠𝑏, 𝑖𝑓, 𝑏, 𝑎𝑗, 𝑠𝑓,𝑔|𝑤𝑇 problem (cf., Gahm et al., 2021)

This problem is NP-hard and its mixed-integer linear program formulation can only be used to
solve small instances. Therefore, Gahm et al. (2021) proposed a heuristic based on the ATCS-rule
with a modification to control the batch utilization, i.e., what proportion of the metal slide capacity
may be used (utilizing the whole metal slide can lead to suboptimal solutions in a serial batching

aykut.uzunoglu@uni-a.de

2

problem with weighted total tardiness objective). To control the batch utilization, a modified
maximum batch capacity 𝑏𝑐𝑚𝑜𝑑 is used: 𝑏𝑐𝑚𝑜𝑑 ≔ max⁡{𝛽 ⋅ 𝑏𝑐,max{𝑎𝑗|∀𝑗 ∈ 𝐽}}.

The ATCS-rule defines job-specific urgency values each time step⁡𝑡 in the planning horizon that
will then be used in the heuristic to define which jobs are grouped as batches and in which order the
batches have to be processed by the machines. For the urgency evaluation, two look-ahead
parameters, 𝜅1 and 𝜅2, must be specified in the ACTS function depicted in equation (1):

𝐴𝑇𝐶𝑆𝑗⁡⁡(𝑡, 𝑓) = ⁡
𝑤𝑗

𝑝𝑗
⋅ exp (−

max⁡{𝑑𝑗 − 𝑝𝑗 − 𝑡, 0}
𝜅1 ⋅ �̅�𝑡

) ⋅ exp⁡ (−
𝑠𝑓,𝑓𝑗
𝜅2 ⋅ �̅�𝑗

) (1)

One can find reasonable value ranges for those parameters in the literature (e.g., 𝜅1� [0.5,
1.0,…, 5.0] and 𝜅2� [0.1,0.2, …, 1.6], cf., Lee & Pinedo, 1997). For the utilization degree 𝛽, the
range [0.5, 0.55, …, 1] is considered since jobs of the data set can have an area demand up to 50%
of the metal slide area supply (cf., Gahm et al., 2021). The heuristic uses 1,760 combinations based
on those intervals and eleven estimated parameters (of Lee & Pinedo (1997), combined with eleven
𝛽 values) for the online full grid search.

Since this approach lacks efficiency particularly for large problem instances, we propose to
estimate a set 𝑆𝑖 of parameter combinations for a problem instance 𝐼𝑖 that likely lead to good
solutions. Machine learning methods showed to be successful estimators for tasks in very different
areas. Park et al. (2000) introduced the application of Neural Networks (NN) for the prediction of
𝜅1, 𝜅2 for the ATCS heuristic applied to a parallel machine environment. Mönch et al. (2006) build
on the work of Park et al. (2000) and successfully use, besides NNs, Inductive Decision Trees for a
similar problem with dynamic job arrival times. However, those contributions only consider small
instance feature vectors, simple learning pipelines, NNs with single hidden layers, and particularly
do not consider the dependency between the output variables (the dependency between 𝜅1 and 𝜅2
can be easily seen in equation (1)). Therefore, the machine learning model must be capable to
consider the dependency between the output values (targets) 𝜅1, 𝜅2 and 𝛽. NNs show to be a
powerful machine learning model with the capability of operating on multi-dimensional output
spaces (cf., Bishop, 2006). To capture the multi-dimensionality and interdependency of the output,
NNs are chosen to predict promising parameter combinations.

3. Pipeline Configuration, Model Training, and Prediction Application

For the training and validation of the NN, a data set with 93,360 scheduling instances is
generated. Those scheduling instances are divided into 18,672 instance classes with each class
containing five instances. The instance classes are a result of different combinations of instance
attributes. The most important attributes are: number of jobs n� {30, 60, 100, 200, 400, 800, 1600,
3200}, number of machines m� {1, 3, 4, 5, 10, 20}, and number of incompatible job families q�
{3, 5, 10, 20, 40}. Further attributes are, for example, setup time severity, tardiness factor, and due
data range. After the instance generation, the instances are solved with ACTS-β by using a multi-
start heuristic for all possible 1,771 parameter combinations. With that, every problem instance has
a solution set with parameter combinations that results in the best (known) objective value. Since
scalar- or vector-valued targets are easier to handle for machine learning models, the target set
(resulting from the solution set) should be transferred to a vector-valued target by systematically
“picking” a single representative of the solution set. Accordingly, problem instance 𝐼𝑖 leads to a
single sample 𝑆𝑖 by using the single representative of the best solutions calculated by ATCS-β. The
target vector �̂�𝑖 represents the parameter combination assigned to sample 𝑆𝑖. The picking process
starts by calculating the mean 𝛽 value (�̅�) and filtering the parameter combinations in the solution
set that have the closest 𝛽 value to �̅�. Those steps are repeated with 𝜅1 and 𝜅2 which in the end
returns a single representative of the solution set. This single representative will then be used in the
machine learning model as the target vector that has to be predicted.

To increase prediction performance, different machine learning pipeline variations have been
developed and analyzed. For feature engineering, two variants of numerical representations of a
problem instance 𝐼𝑖 by a feature vector �̅�𝑖 were developed: a complex feature vector (CF) and an
aggregated feature vector (AF). The CF-vector consists of 12 complex instance characteristics that
are (partly) inspired by the literature (e.g., approximated makespan, extrapolated tardiness factor, or
approximated number of jobs per batch). The AF-vector uses five simple characteristics (e.g.,
number of jobs) and enlarges the vector by the aggregation of job processing times, job due dates,

3

job weights, job capacity requirements, job capacity requirement to processing time ratios, job due
date to weight ratios, setup times, and the number of jobs per family. Those basic instance
characteristics are then aggregated by the following ten aggregation functions: sum, median,
minimum, maximum, variance, first quartile, third quartile, 10% percentile, 90% percentile, and
skewness. In total, the AF-vector contains 85 features. As preliminary experiments have shown that
dimension reduction by Principal Component Analysis does not increase prediction performance,
we decided to not use it in the pipeline.

For scaling of the output values, machine learning pipelines with a basic min-max-output-scaler
(osc) and pipelines without any scaling (no-osc) were included in the evaluation.

The first training phase follows a grid search for the hyper-parameter tuning of the NN and 5-
fold cross-validation in every step to estimate the prediction error by the root mean squared error
metric. In this initial training phase, the data set is reduced to 40% of the whole data set to speed up
the training. After tuning the hyper-parameters, the final model is trained on 80% of the data.

Besides the direct application of the predicted parameters in the heuristic, one can build a
reduced grid based on the predicted parameters to improve the solution quality. With that, parameter
combinations “next” to the predicted parameter vector �̂�𝑖 are also included in the reduced parameter
grid. Because the reduced grid also increases the computation time (compared to single parameter
configuration), the number of neighbors added to the reduced grid must be chosen wisely (to obtain
a reasonable trade-off between computation time and solution quality). To control the size of the
reduced grid, the exploration factor 𝜁 is introduced. This factor defines how many neighbors are
added to the reduced grid, e.g., with an exploration factor 𝜁 = 1, the eight closest neighbors (greater
and smaller than the predicted value) are added to the reduced grid. For 𝜁 = 2, 64 parameter
combinations, and for 𝜁 = 3, 216 combinations are added to the reduced grid. Additionally, the
predicted parameter combination and also the eleven simply estimated parameter combinations (of
Lee & Pinedo (1997), combined with eleven 𝛽 values) are added to the reduced grid.

To control the efficiency trade-off, we propose using different grid scenarios depending on the
number of jobs (as the number of jobs is the major influencing factor of the computation time). For
that, three different grid scenarios (GS) are analyzed: GS1 – the exploration factor 𝜁 is set to 2 for
all instance types; GS2 – 𝜁 is set to 1 for instances with n� [600, 3200], to 2 for n� [100, 600) and
3 for n� [0, 100); GS3 – 𝜁 is set to 1 for instances with n� [1000, 3200], to 2 for n� [100, 1000),
and to 3 for n� [0, 100).

4. Results

After training the final model on 80% of the data, the remaining 20% (test data set), are used to
assess the prediction performance for the actual task – minimizing the total weighted tardiness. For
that, the predictions for the test data are fed into the ATCS-β heuristic and the resulting objective
value are compared to the best-known objective value of every instance found by the multi-start
heuristic with 1,771 parameter combinations.

As performance metric, the “mean relative improvement to the worst objective value” (MRIW)
is used since objective values may be close (or equal to) zero for some instances which could cause
numerical issues (cf., Valente & Schaller, 2012). Here, larger MRIWs indicate better solution quality
and lower total tardiness.

Table 1. MRIW – Performance comparison

 MRIW Computation time

16
00

32
00

M
EA

N

16
00

32
00

n 30 60 100 200 400 800 30 60 100 200 400 800

 [s] [s] [s] [s] [s] [m] [m] [m]
BATCS-β without ML
 25.0 23.8 21.5 13.0 6.0 13.7 5.3 4.6 14.1 1.5 1.6 4.1 12.8 42.4 6.1 25.3 131.5
BATCS-β with ML(CF, no-osc)
GS1 19.8 19.0 18.0 6.5 3.8 13.8 6.0 1.5 11.0 0.1 0.1 0.3 0.5 1.3 0.2 0.9 5.4
GS2 21.1 20.2 18.0 6.5 3.8 10.6 8.2 1.0 11.2 0.1 0.2 0.3 0.5 1.3 0.1 0.2 1.4
GS3 21.1 20.2 18.0 6.5 3.8 13.8 8.2 1.0 11.6 0.1 0.2 0.3 0.5 1.3 0.3 0.3 1.6
BATCS-β with ML(CF, osc)

4

GS1 19.8 19.3 19.1 5.8 3.9 14.8 11.8 4.7 12.4 0.1 0.1 0.3 0.6 1.7 0.3 1.1 5.5
GS2 21.1 20.2 19.1 5.8 3.9 14.1 10.7 4.7 12.4 0.1 0.2 0.3 0.5 1.3 0.1 0.3 1.5
GS3 21.1 20.2 19.1 5.8 3.9 14.8 10.7 4.7 12.5 0.1 0.2 0.3 0.5 1.4 0.2 0.3 1.5
BATCS-β with ML(AF, no-osc)
GS1 23.7 15.8 19.8 6.9 8.5 15.2 10.9 3.7 13.0 0.1 0.1 0.3 0.6 1.4 0.2 0.9 5.2
GS2 25.0 19.7 19.8 6.9 8.5 9.8 8.5 2.3 12.5 0.1 0.2 0.2 0.5 1.4 0.1 0.2 1.5
GS3 25.0 19.7 19.8 6.9 8.5 15.2 8.5 2.3 13.2 0.1 0.2 0.3 0.5 1.3 0.2 0.3 1.6
BATCS-β with ML(AF, osc)
GS1 19.1 15.4 18.8 7.9 10.8 15.6 6.1 2.1 12.0 0.1 0.1 0.2 0.5 1.3 0.2 0.8 5.0
GS2 21.1 19.9 18.8 7.9 10.8 11.6 6.0 1.3 12.2 0.1 0.2 0.3 0.5 1.3 0.1 0.3 1.5
GS3 21.1 19.9 18.8 7.9 10.8 15.6 6.0 1.3 12.7 0.1 0.2 0.3 0.5 1.4 0.3 0.3 1.5

Table 1 depicts the results based on the test data set grouped according to the number of jobs.
The first row shows the MRIWs computed with the multi-start BATCS-β heuristic. In comparison,
the following rows show the performance of the machine learning-based multi-start heuristic for
four pipeline configurations: CF and AF feature vectors with and without output scaling. Regarding
those configurations, the AF-vector without output scaling (no-osc) with GS3 performs best on
average. For instances with n t 800, the BATCS-β heuristic with reduced grids even outperforms
the full grid approach. This is because BATCS-β with ML adds the prediction of the machine
learning model to the parameter space (which was not given in BATCS-β). Summarizing the results
in Table 1, we can report that the BATCS-β heuristic with parameter values predicted by NNs
achieves a comparable solution quality and is superior in terms of computation time.

5. Conclusion

This work demonstrates the efficiency of parameter estimation by machine learning (NNs) for
the BATCS-β heuristic in the case of serial batch scheduling problems. The machine learning-based
approach can reduce the initial parameter space of 1,771 combinations remarkably. Additionally,
the option to control the trade-off between solution quality and computation time is provided by an
exploration parameter. With that parameter, the BATCS-β heuristic enhanced by machine learning
reaches 99.1% of the solution quality by simultaneously decreasing the computation time by 94.3%
on average (compared to the original BATCS-β heuristic).

References
Bishop, C. M. (2006). Pattern recognition and machine learning. Information Science and

Statistics. New York, NY: Springer Science+Business Media LLC.
Gahm, C., Wahl, S., & Tuma, A. (2021). Scheduling parallel serial-batch processing machines

with incompatible job families, sequence-dependent setup times and arbitrary sizes.
International Journal of Production Research, 1–24. doi:10.1080/00207543.2021.1951446.

Lee, Y.-H., & Pinedo, M. L. (1997). Scheduling jobs on parallel machines with sequence-
dependent setup times. European Journal of Operational Research, 100(3), 464–474.
doi:10.1016/S0377-2217(95)00376-2.

Mönch, L., Zimmermann, J., & Otto, P. (2006). Machine learning techniques for scheduling jobs
with incompatible families and unequal ready times on parallel batch machines. Engineering
Applications of Artificial Intelligence, 19(3), 235–245. doi:10.1016/j.engappai.2005.10.001.

Park, Y., Kim, S., & Lee, Y.-H. (2000). Scheduling jobs on parallel machines applying neural
network and heuristic rules. Computers & Industrial Engineering, 38(1), 189–202.
doi:10.1016/S0360-8352(00)00038-3.

Valente, J. M., & Schaller, J. E. (2012). Dispatching heuristics for the single machine weighted
quadratic tardiness scheduling problem. Computers & Operations Research, 39(9), 2223–
2231. doi:10.1016/j.cor.2011.11.005.

1 2 3

1

2

3

n
1, · · · , n m OR1, · · · , ORm

j
ORi Oi ni

n =

Pm
i=1 ni Ji

ORi ORi W
j

j 2 R
j 2 B ORi Ri Bi

j ORi wi,j

pi,j

ORi �1
i ⇢i�

2
i

�1
i ⇢i �2

i

NP

2

2 �2
1 �1

2

OR1 OR2

�1⇢1 OR1 ⇢2�2

OR2 f(�i(t)) f(⇢i(t)) �i ⇢i
t

O(n1W) O(n2W)

f(�1(t)) f(⇢1(t)) f(�2(t)) f(⇢2(t)) t 2 [0, · · · ,W]

f(�1(t)) + f(⇢1(W � t)) + f(�2(W � t)) + f(⇢2(t)), 8t 2 [0, · · · ,W]

O(W + 1) OR1 OR2

t �1 �2

O(W+1) O(nW) 2

NP

k > 2 k
ORi O(nW)

t [0 · · · ,W] t1, t2
f(⇢i(W � t1 � t2))

�1
i �2

i

ORi t1, t2 [0 · · · ,W] O(nW 2
)

O(knW 2
)

k! k
NP

m 3

m NP

zi,j,t
j t i

j 2 Ji x1
i,j x2

i,j j 2 Bi

yi,j j 2 Ri x1
i,j = 1 x2

i,j = 1

j �1
i �2

i x1
i,j = 0

x2
i,j = 0 yi,j = 1 j ⇢i

yi,j = 0

ORi si � 0

ei � 0 ⇢i
Oi, Ok i < k zi,k

zi,k = 1 ei  sk zi,k = 0

max

X

i2[1,··· ,m], j2Bi

pi,j(x
1
i,j + x2

i,j) +

X

i2[1,··· ,m], j2Ri

pi,jyi,j

X

j2Bi

wi,jx
1
i,j  si, 8i 2 [1, · · · ,m]

X

j2Ri

wi,jyi,j  ei � si, 8i 2 [1, · · · ,m]

X

j2Bi

wi,jx
2
i,j  W � ei, 8i 2 [1, · · · ,m]

X

i2[1,··· ,m], j2Ri

wi,jyi,j  W

si  ei 8i 2 [1, · · · ,m]

x1
i,j + x2

i,j  1 8j 2 Bi 8i 2 [1, · · · ,m]

ei  sk +W (1� zi,k) 8i, k 2 [1, · · · ,m], i 6= k

ek  si +Wzi,k 8i, k 2 [1, · · · ,m], i 6= k

x1
i,j 2 {0, 1} 8i 2 [1, · · · ,m], 8j 2 Bi

x2
i,j 2 {0, 1} 8i 2 [1, · · · ,m], 8j 2 Bi

yi,j 2 {0, 1} 8i 2 [1, · · · ,m], 8j 2 Ri

zi,k 2 {0, 1} 8i, k 2 [1, · · · ,m], i 6= k

Oi

⇢i si
Oi ei � si

Oi

⇢i W � ei

Oi

Oi

Oi, Ok

Oi Ok

· · · x1
i,j , x

2
i,j , yi,j , zi,k

j k
j j 2 Ri

yi,j = 0

X

k2Ri[Bi:k 6=j, wi,kwi,j , pi,k>pi,j

wi,k > W � wi,j + 1

Ri [Bi j
W � wi,j

j 2 Ri x1
i,j + x2

i,j = 0

X

k2Bi:k 6=j, wi,kwi,j , pi,k>pi,j

wi,k > W � wi,j + 1

Bi j
W � wi,j

0/1

1

Valid inequalities for the dynamic asset protection

problem

Quentin Peña, Mehdi Serairi and Aziz Moukrim

Université de technologie de Compiègne, CNRS, Heudiasyc (Heuristics and Diagnosis of
Complex Systems), CS 60 319 - 60 203 Compiègne Cedex

quentin.pena@hds.utc.fr

Keywords: team orienteering problem, bi-objective, synchronization, dynamic, wildfire

1 Introduction

In the recent years, we have seen a surge in the number and strength of wildfires around
the globe. These events, whether natural or caused by human activities, can damage the
wildlife, as well as people and infrastructures. When a wildfire breaks, Incident Management
Teams (IMTs) need to dispatch their resources to contain the fire, evacuate the people, and
protect community assets (hospitals, bridges, schools, etc.).

In this paper, we will focus more particularly on vehicle routing for asset protection.
IMTs need to assign an heterogeneous fleet of vehicles to the different community assets
to carry out preventive actions. Such actions include wetting the facade of a building or
removing fuel material, for example. These actions effectively mitigate the damages if they
are accomplished within a specified time window, not too soon or too late. Their complexity
often requires the cooperation and synchronization of multiple teams and vehicles.

Unfortunately, the behaviour of wildfires and its consequences are hard to predict.
Changes in wind conditions, road closures due to fallen trees, vehicles breakdowns, can
make the vehicles’ routes obsolete. IMTs need to react to any disruption by updating the
routes of the vehicles. The new routes must protect as many assets as possible, but there
is an incentive to limit the deviation from the initial routes, as some actions may require
specific preparation and to limit communication issues.

The problem of routing vehicles for asset protection during a wildfire was presented
as the Asset Protection Problem during escaped wildfire (APP) in Van der Merwe et. al.

(2015). Van der Merwe et. al. (2017) defines the dynamic APP that aims at rerouting
vehicles after a disruption occurs. As the dynamic APP is a bi-objective problem, the
solution is a trade-off surface called Pareto front. The Pareto front is described by a set of
solutions such that there is no feasible solution that strictly improves one objective without
degrading the second. We say that these solutions are non-dominated. Multiple heuristic
approaches have been studied for the mono-objective version of the APP ((Roozbeh et

al. 2018), (Nuraiman et. al. 2020), (Yahiaoui et al. 2021)).
Our work focuses on improving the resolution of the optimal Pareto front for the dy-

namic APP by finding good valid inequalities that rely on the bi-objective or dynamic
nature of our problem.

2 Problem presentation

The first mathematical formulation of the APP was proposed by Van der Merwe et

al. (2015). The authors modeled the APP as a Synchronized Team Orienteering Problem
with Time Windows (STOPTW). An instance is defined as a graph G = (V,A). The
vertices V represent the depots and the assets we seek to protect. Each asset has a resource
requirement defined as a vector of integers. Resources are non-consumable. Each asset also

2

has a time window in which the protection action must start. To carry out the protection
actions, a set of heterogeneous vehicles is available, each having a capability vector. The
aim is to assign the assets to the routes of vehicles, such that the total protected value
is maximized. An asset is protected if the cumulative capability vectors of the vehicles
assigned to the asset covers the resource requirements of the asset, and if the protection
action starts within the time window of the asset. The protection action at an asset can
start only when every vehicle assigned to the asset has arrived (synchronization).

Van der Merwe et al. (2017) extended the mathematical formulation of the APP to
the dynamic APP. On top of the assets and vehicles, the dynamic APP is based on initial
routes for the vehicles before the disruption occurred. The objective is to maximize the
total protected value while minimizing the deviation from the initial routes. The deviation
can be represented as the number of asset/vehicle reassignments, i.e. for each vehicle the
number of assets added to or removed from its pre-disruption route.

An important property of the dynamic APP is that an asset that does not participate
to the total protected value can be visited outside of its time window. Assets that are not
protected in the solution do not have to be removed from the routes of any vehicle, hence
entailing no deviation. In other words, an asset that does not improve the first objective
(total protected value) does not degrade the second one (deviation). It is thus always
possible to build a solution with null deviation from the pre-disruption routes, even if a
route became infeasible due to the disruption.

3 Valid Inequalities

We studied the problem to deduce valid inequalities based on properties specific to its
bi-objective and dynamic nature. We will first present sets of valid inequalities that bound
the deviation implied by the protection of an asset, based on their resource requirements.
We will then present incompatibility between assets based on their time window, and
deduce a set of valid inequalities. We will finally present a set of valid inequalities that
combine incompatibility between assets and resource requirements.

3.1 Deviation-based inequalities

In a non-dominated solution, if an asset has been added to the route of at least one
vehicle, the asset is protected in the solution. Otherwise, we could construct a feasible
solution with the same protected value but strictly lower deviation (hence dominating our
original solution) by simply not adding this asset to the route of the vehicle. Given upper
and lower bounds ub+v (i) and lb+v (i) on the number of vehicles required to protect asset i,
we have that:

ub+v (i)Yi �
X

p2P
Z+
ip � lb+v (i)Yi (1)

where Yi is the decision variable representing the protection status of asset i, P the set
of available vehicles, and Z+

ip the decision variable representing the addition of asset i to
the route of vehicle p.

We compute values for these bounds based on the resource requirement of the asset
and the capability vector of the available vehicles.

The lower bound lb+v (i) is the minimum number of vehicles required to cover the resource
requirement of asset i. We can compute this bound by solving a Mixed Integer Program
(MIP) for each asset, that can be written as a multi-dimensional knapsack problem. The
size of the MIP is small enough to efficiently compute the value of the lower bound in spite
of the problem being NP-hard.

3

The upper bound lb+v (i) is the minimum number of vehicles required to cover the
resource requirement of asset i without adding a redundant vehicle. A vehicle is redundant
if the resource requirement of the asset is still covered if the vehicle is not considered.
Thus, adding a redundant vehicle to the protection of an asset does not improve the total
protected value but increases the deviation. We can compute this bound by solving a MIP
for each asset. We believe this problem to be NP-hard, but the size of the MIP is small
enough for the computation to be efficient.

Similar bounds are computed for the number of removals from routes for asset i.

3.2 Incompatibility/vehicle clique inequalities

Two assets i and j are incompatible/vehicle for vehicle p if vehicle p cannot visit asset i
and asset j within their respective time windows. In other words, if vehicle p visits one of
the asset at the opening of its time window, it always reaches the second asset after the
closing of its time window.

Let Ginc/v
p be the graph of incompatibilities between assets for vehicle p. Each node of

this graph is an asset of our problem. There is an edge between two nodes i and j if assets
i and j are incompatible/vehicle. A clique is a subset of nodes in an undirected graph that
are pairwise adjacent. Vehicle p can visit at most one of the asset of the clique within
their time window, which is necessary for the asset to be protected. Thus, we define valid
inequalities to ensure that at most one asset is protected among the assets of the clique
visited by vehicle p.

3.3 Incompatibility/solution clique inequalities

We call two assets i and j incompatible/solution if assets i and j are incompati-
ble/vehicle for every available vehicle. Consider C a clique of incompatible/solution assets.
Then, each vehicle can be used for the protection of at most one asset of C.

Let ub(C) be the maximum number of assets in C that can be protected using every
vehicle at most once, based on the resource requirements of the assets. We thus have that:

X

i2C
Yi  ub(C) (2)

We can compute ub(C) by solving a MIP for each clique C. The problem is NP-hard,
but the size of the MIP is small enough for the computation to be efficient.

4 Results

We generated 10 test instances following the specifications of Van der Merwe et al.

(2015). We implemented the model in Julia. We solved the model with CPLEX 12.8, on a
computer with an Intel Core i7-8550U processor and 8GB of RAM.

For every instance, we generated the extreme point allowing for maximum deviation
for three different vehicle breakdowns, with a time limit of 1800 seconds. Table 1 shows
the average solve time to compute this extreme point for instances based on which valid
inequalities were added to the model. The number of instances solved within the time limit
is shown in parenthesis.

We greatly improved the model when introducing our valid inequalities. Incompatibil-
ity/vehicle inequalities yield the best result: we solved 6 more instances with 50 assets and
5 more with 60 assets within the time limit. On average, we reduced by a third the solve
time for the 4 instances solved to optimality with the initial model.

4

Table 1. Generation of one extreme point: solve time in seconds, number of optimal solutions

Instance size (number of assets)
Valid inequalities 30 40 50 60

None 42 (30/30) 29 (20/30) 58 (09/30) 458 (04/30)
Deviation 22 (30/30) 27 (20/30) 198 (09/30) 268 (03/30)
Inc/veh 1.4 (30/30) 22 (25/30) 267 (15/30) 841 (09/30)
Inc/sol 12 (30/30) 28 (24/30) 37 (11/30) 474 (04/30)

All above 1.2 (30/30) 61 (26/30) 252 (18/30) 518 (11/30)

Deviation-based inequalities greatly improve the relaxation of the model. However, as
we compute the extreme point with highest deviation, the introduction of these inequalities
alone did not seem to have an impact on the solve time. But, when combined with incom-
patibility/vehicle inequalities, they solved two more instances than incompatibility/vehicle
inequalities alone, and almost halved the solve time for the 9 instances already solved
within the time limit.

5 Conclusion

We deduced from the properties and structure of our problem valid inequalities that
improved the resolution of our model. We improved the viability of using this model to
evaluate the quality of the choices made by IMTs in retrospect. Additional inequalities or
changes to the model would be needed to solve large-size instances more consistently.

However using this model for providing in real time the exact Pareto front when a
disruption occurs seems out of reach. We would need to consider a heuristic approach to
obtain a good approximation of the Pareto front in reasonable time.

Acknowledgements

This study was carried out within the framework of GEOSAFE (Geospatial Based
Environment For Optimization Systems Addressing Fire Emergencies).

References

Nuraiman, D., Ozlen, M. and Hearne, J., 2020. A spatial decomposition based math-heuristic
approach to the asset protection problem. Operations Research Perspectives, 7, p. 100141.

Ozlen, M. and Azizoglu, M., 2009. Multi-objective integer programming: A general approach for
generating all non-dominated solutions. European Journal of Operational Research, 199(1),
pp. 25-35.

Roozbeh, I., Ozlen, M. and Hearne, J., 2018. An Adaptive Large Neighbourhood Search for asset
protection during escaped wildfires. Computers & Operations Research, 97, pp. 125-134.

Van der Merwe, M., Minas, J., Ozlen, M. and Hearne, J., 2015. A mixed integer programming
approach for asset protection during escaped wildfires. Canadian Journal of Forest Research,
45(4), pp. 444-451.

Van der Merwe, M., Ozlen, M., Hearne, J. and Minas, J., 2017. Dynamic rerouting of vehicles
during cooperative wildfire response operations. Annals of Operations Research, 254(1-2), pp.
467-480.

Yahiaoui, A-E., Moukrim, A. and Serairi, M., 2021. GRASP-ILS and set cover hybrid heuristic for
the synchronized team orienteering problem with time windows. International Transactions
in Operational Research Preprint, hal-03110595v3f.

1 1

J

A B A
M1 B M1

M2

M2

M1

M1

A

M2 M1

M1

M2 M2

(i)

(ii)

F2| |
P

Cj

m

A B
|A| = nA |B| = nB n = nA + nB

j p

1
j M1 k

M1 M2 p

1
k p

2
k

p

1
k < p

2
k ⇢(0) M2 [0, ⇢(0)]

M1 M2

M2

� C

1
s (�) C

2
s (�)

s M1 M2 s �

C

2
s (�) � C

1
s (�) M2 s

M1 s = 1, . . . , n
s + 1 C

2
s (�) � C

1
s (�)

s = 0, . . . , n�1 p

1
k < p

2
k k 2 B

M1

M2

j Gj

j j+1 j = 1, . . . , nA�1 G0

GnA

M2 M1

M2 M1

M2 M1

nA + 1 Gi Gi

i 2 A i+ 1 2 A
xji = 1 j 2 B Gi

⇢i Gi

i+ 1

min
X

i2A
(
i�1X

g=0

X

j2B
xjg · p1j)

X

j2B
xji = 1 8i = 0, . . . , nA

⇢i+1 = ⇢i � p

1
i +

X

j2B
xji · (p2j � p

1
j) 8i = 0, . . . , nA � 1

⇢0 = ⇢(0)

⇢i � 0 8i = 1, . . . , nA

xji 2 {0, 1} 8j 2 B, i = 1, . . . , nA

j 2 B
⇢i

Gi+1 Gi

M2

M1 M2 M1

1

Carbon footprint aware resource constrained project

scheduling problem in manufacturing

Humyun Fuad Rahman1, Tom Servranckx2, Ripon K. Chakrabortty1, Mario
Vanhoucke2,3,4 and Sondoss El Sawah1

1 Capability Systems Centre, School of Engineering & IT, UNSW Canberra, Australia
humyun.fuad@adfa.edu.au, r.chakrabortty@adfa.edu.au, s.elsawah@adfa.edu.au

2 Faculty of Economics and Business Administration, Ghent University, Tweekerkenstraat 2,
9000 Ghent, Belgium

tom.servranckx@ugent.be, mario.vanhoucke@ugent.be

3 Operations and Technology Management Centre, Vlerick Business School, Reep 1, 9000 Ghent,
Belgium

mario.vanhoucke@vlerick.com

4 UCL School of Management, University College London, 1 Canada Square, London E14 5AA,
UK

m.vanhoucke@ucl.ac.uk

Keywords: Manufacturing project scheduling, Carbon footprints, Human factors, Memetic
algorithm.

1 Introduction

Manufacturing sectors are under intense pressure to increase customer satisfaction and
maintain market share in the face of fierce competition due to the globalisation of supply
chains and modern industry 4.0 technologies. In order to stay competitive, manufacturers
are switching from make-to-stock to make-to-order (MTO) or engineering-to-order (ETO)
manufacturing processes, which allow consumers to personalise items before placing an
order (Rahman et. al. 2015). Project managers strive to reduce the project’s completion
time or makespan while maintaining the temporal link between activities and meeting
resource restrictions. As a result, the problem can be described as a resource constrained
project scheduling problem in manufacturing (RCPSPM). Even though managers deal with
project scheduling issues daily in MTO/ETO systems, there is little scheduling literature
regarding such issues. Only a few independent approaches have been reported that are
tailored to specific manufacturing industries such as aircraft assembly (Zhu et. al. 2019),
shipbuilding (Wang et. al. 2019), and wood manufacturing (Ghiyasinasab et. al. 2021).
Furthermore, these studies do not consider carbon footprint or energy-related objectives,
which are two crucial concepts in our study.

The RCPSPM is an NP-hard issue that addresses complicated planning and schedul-
ing challenges in industrial contexts (Ghiyasinasab et. al. 2021). While existing research
in this field uses restricted assumptions (Oztemel and Selam 2017), we extend the RCP-
SPM to consider the relation between human factors and the energy use in a bi-objective
optimisation problem. The type of operator used to execute activities impacts the overall
completion time of a project, influencing whether it can be completed on time or not. If not,
it impacts how the expenses associated with late completion of a project may be avoided.
Aside from the impact on activity durations, human factors also impact an operator’s
pay rate per unit hour and energy usage (carbon footprint), which are the resources used
to carry out operations. Most of the studies in RCPSPM, to the best of our knowledge,
focus solely on reducing the project’s makespan (a time-based objective) or overall cost
to execute the project. However, a bi-objective approach to assess the overall cost of the
manufacturing project coupled with green performance indicators (e.g. carbon footprint)

2

receives minimal attention in the existing literature. This gap presents an opportunity to
take advantage of the advanced technology found in MTO/ETO systems by creating a
unique project scheduling strategy capable of directing project managers in a variety of
ways: (i) all project operations are scheduled to minimise both objectives: total project
cost and carbon footprint; (ii) appropriate operators must be assigned to each task based
on their human aspects while fulfilling pay restrictions and peak power load.

Carbon footprint aware RCPSPM (CRCPSPM) refers to integrating operator alloca-
tion and carbon footprint in RCPSPM. Since the CRCPSPM is a complicated scheduling
problem (an extension of traditional RCPSPs), an effective optimisation approach is nec-
essary to find (sub)optimal solutions that satisfy both objectives in an acceptable amount
of time (Rahman et. al. 2020). Motivated by prior success in handling both single- and
multi-objective scheduling problems, a genetic algorithm-based MA is proposed for solving
the CRCPSPM. We test the procedure on 156 problem instances that are based on the
basic RCPSP instances from the project scheduling library (PSLIB) due to the lack of
standard benchmark instances for the CRCPSPM. The proposed GA-based memetic algo-
rithm strategy is compared to the well-known and powerful non-dominated sorting genetic
algorithm-II (NSGA-II) (Deb et. al. 2002) for validation. In summary, our contributions
are twofold: (1) A novel CRCPSPM model is suggested that considers operator human
variables and their influence on cost and carbon footprint (i.e. energy consumption). (2)
A GA-based MA is proposed to solve the multi-objective CRCPSPM and tested on newly
generated data instances as well as validated against a well-known benchmark procedure.

2 Problem description

Each project activity in a manufacturing setting uses a variety of machinery that is
managed by operators. Because of the intricacy of running those devices, various operators
with varying human variables can do a task quicker (slower), which results in consuming
more (less) energy. As a result, project managers must handle two interconnected sub-
problems. First, they must allocate operators to activities while considering the impact of
various salary rates, power consumption and activity duration combinations. Second, they
must establish how all project operations should be scheduled to reduce total cost and
carbon impact.

Operator assignment: We investigate four human factors of a set of operator types
M: the skill factor ↵

m

, the age factor �
m

, the learning factor �
m

and the forgetting factor
�
m

. Based on these human factors, a distinction between the operator types can be made
in the production process: the best (m = 1), medium (m = 2) and worst (m = 3) qualified
operators. The operators of type m can execute activity i 2 I faster and thus reduce
its initial duration (di,m) to the actual duration (d

i,m

). By speeding up the activities, the
total duration of the project makespan (C

max

) can be reduced. Therefore, the probability of
meeting the due date (h) will be increased and the cost of tardiness (C

t

) will be decreased.
In order to reduce the duration of activity i, the operator of type m uses machines that
require more power rp

i,m

, which increases the cost of energy consumption (C
e

). Furthermore,
the wage cost of activity i depends on the type of operator m (rw

i,m

) and thus the assignment
of operators will also have an impact on the total cost of wages in the project (C

w

).
Project scheduling: A timetable should be constructed for all activities i 2 I given

the precedence relations (i, j) 2 A between the activities (i, j 2 I). The activities should
be scheduled satisfying two types of resource constraints: a peak power load Rp and a
maximum allowed wage Rw in time period t (with t 2 T). The aim is to optimise the total
cost of the project (C

tot

), and the carbon footprint (E). First, the total cost consists of

3

four parts: a fixed cost (C
f

), a tardiness cost (C
t

), an energy cost (C
e

) and a wage cost
(C

w

). Second, the carbon footprint depends on a carbon emission per unit of energy (✏).

3 Solution approach

In order to solve the CRCPSPM, a GA-based MA is proposed in this study. Gold-
berg and Holland (1988) proposed the GA, i.e. an evolutionary algorithm, that is tra-
ditionally started with multiple random solutions. The collection of solutions is called a
population and each solution in the population is referred to as a chromosome. Natural
selection through crossover and mutation develops chromosomes in a search for solutions
with higher fitness values (Rahman et. al. 2020, Rahman et. al. 2015). Furthermore, the
search process may improve even further by combining a local search strategy with the
GA, labelled a memetic algorithm (MA) (Rahman et. al. 2021). The algorithm begins
with non-random population initialisation and evolves through reproduction operators. A
duplication method is included in the suggested MA to maintain population variety. A
non-dominated sorting mechanism aids in identifying a viable set of candidate solutions
for the following generations.

3.1 Results and experimental analysis

The performance of the GA is compared with the NSGA-II, which is a sophisticated
algorithm for solving complicated multi-objective problems and is commonly used as a
benchmark method (Deb et. al. 2002). Both algorithms are built in the C++ language and
run in the same computational environment to ensure a fair comparison between the GA-
based MA and the NSGA-II (Intel core i7 processor with 3.40 GHz clock speed and 16 GB
RAM). The suggested algorithms’ performance is assessed using an inverted generational
distance (IGD), which combines convergence and spread (Zheng and Wang 2016). We
used a pragmatic approach to construct a dataset for measuring the performance of the
MA and the NSGA-II by expanding the traditional RCPSP instances from the PSPLIB
dataset. This results in a total of 156 data instances: 48 J30 instances, 48 J60 instances
and 60 J120 instances. The newly generated problem instances are available on https:

//research.unsw.edu.au/projects/decision-support-analytics-research-group.
This section presents a comparison between the proposed GA-based MA and NSGA-II

based on the generated dataset. In order to ensure a fair comparison, each algorithm is
terminated after 5,000 schedules. Table 1 shows the average IGD(V, �?) values for the 156
problem instances. Since the due date for the project plays an important role in the multi-
objective problem under study, the experimental evaluation is carried out with increments
(0%, 2%, and 5%) in the deadline. It is shown that the proposed GA-based MA outperforms
all other algorithms. More importantly, the performance of MA is robust for different
increments of the project’s deadline. While observing the performance of MA, it is clear
that the preservation of elite solutions and its participation in the selection mechanism
enhances the performance of MA.

4 Conclusion

Project scheduling methodologies are becoming more common in MTO/ETO systems
for resolving scheduling issues. With more people becoming aware of global warming and
energy use, lowering the carbon footprint is also becoming increasingly important to avoid
negative environmental repercussions. Furthermore, the human aspects of the operators are
crucial in reducing the entire project cost and carbon impact. However, project managers
frequently overlook human aspects and environmental repercussions when reducing the

4

Deadline Number of Avg. IGD(V, �?)
increment (%) activities MA NSGA-II

0 30 0.210391 0.236984
120 0.278378 0.304491

2 30 0.207589 0.202244
120 0.247173 0.282273

5 30 0.221608 0.246423
120 0.168162 0.236258

Table 1. Comparison between the GA-based MA and NSGA-II

project duration. As a result, this study advises to optimise the project’s overall cost and
carbon footprint simultaneously. Future work could investigate the impact of low-carbon
scheduling on other objective functions such as net present value (NPV) optimisation.
Finally, a decision support system (DSS) could be designed to help project managers make
decisions by automating the decision-making process and providing a range of suboptimal
options.

References

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, 2002, A fast and elitist multiobjective genetic
algorithm: NSGA-II, IEEE transactions on evolutionary computation, Vol. 06, pp. 182-197.

Ghiyasinasab M., N. Lehoux, S. Ménard and C. Cloutier, 2021, Production planning and project
scheduling for engineer-to-order systems-case study for engineered wood production, Interna-
tional Journal of Production Research, Vol. 59, pp. 1068-1087.

Goldberg D. E., J.H. Holland, 1988, Genetic algorithms and machine learning, Machine learning,
Vol. 03, pp. 95-99.

Oztemel E., A. A. Selam, 2017, Bees Algorithm for multi-mode, resource-constrained project
scheduling in molding industry, Computers & Industrial Engineering, Vol. 112, pp. 187-196.

Rahman H.F., R.K. Chakrabortty and M.J. Ryan, 2020, Memetic algorithm for solving resource
constrained project scheduling problems, Automation in Construction, Vol. 111, pp. 103052.

Rahman H.F., R. Sarker and D. Essam, 2015, A real-time order acceptance and scheduling ap-
proach for permutation flow shop problems, European Journal of Operational Research, Vol.
247, pp. 488-503.

Rahman H.F., R.K. Chakrabortty, S. El Sawah and M.J. Ryan, 2021, Energy-Efficient Project
Scheduling with Supplier Selection in Manufacturing Projects, Expert Systems with Applica-
tions, Vol. 193, pp. 116446.

Wang W., L. Huang and J. Gu, L. Jiang, 2019, Green port project scheduling with comprehensive
efficiency consideration, Maritime Policy & Management, Vol. 46, pp. 967-981.

Zheng X.-L., L. Wang, 2016, A collaborative multiobjective fruit fly optimisation algorithm for the
resource constrained unrelated parallel machine green scheduling problem, IEEE Transactions
on Systems, Man, and Cybernetics: Systems, Vol. 48, pp. 790-800.

Zhu L., J. Lin and Z.-J. Wang, 2019, A discrete oppositional multi-verse optimisation algorithm
for multi-skill resource constrained project scheduling problem, Applied Soft Computing, Vol.
85, pp. 105805.

1

Heuristic solution approaches to the multi-project
scheduling problem

Dries Bredael1, Mario Vanhoucke1,2,3

1 Faculty of Economics and Business Administration, Ghent University, Tweekerkenstraat 2,
9000 Ghent (Belgium)

dries.bredael@ugent.be, mario.vanhoucke@ugent.be

2 Operations and Technology Management Centre, Vlerick Business School, Reep 1, 9000 Ghent
(Belgium)

mario.vanhoucke@vlerick.com

3 UCL School of Management, University College London, 1 Canada Square, London E14 5AA
(UK)

m.vanhoucke@ucl.ac.uk

Keywords: Project Scheduling, Multi-Project, Benchmark Analysis, Metaheuristics

1 Introduction

The Resource-Constrained Multi-Project Scheduling Problem (RCMPSP) requires that
a set of projects from a given project portfolio is scheduled under precedence- and resource
constraints. Each project can be treated as an individual RCPSP, with the added com-
plexity that some of the projects may be required to share certain resources. Furthermore,
the presence of different projects allows for the study of a wide variety of optimisation
criteria when project deadlines, also called due dates, are integrated. In this study, we
analyse a set of existing (meta)heuristic solution approaches to the RCMPSP. We conduct
a benchmark analysis to determine the best solution strategy for a variety of settings. The
performance of the approaches is verified on a set of seven optimisation criteria and the
impact of instance parameters is discussed. In literature, the majority of the proposed so-
lution procedures are limited and only tested for a specific version of the RCMPSP where
the project deadlines are set equal to the critical path length of the projects. Because the
critical path length acts as a lower bound on the projects makespan, an important trade-off
imposed by project earliness is removed from the problem. We reintroduce the possibility
and effects of project earliness by repeating the benchmark analysis on different types of
due dates. A novel dataset, presented by Van Eynde and Vanhoucke (2020), is used to this
purpose. Our findings are reported in a detailed discussion.

Our analysis prompts the creation of a novel solution strategy based on the identified
best elements of legacy heuristics and building on insights gained in our earlier benchmark
analysis. We present a novel two-stage metaheuristic algorithm with the goal of outper-
forming the existing approaches on many of the previously discussed metrics.

2 Problem statement

In our literature review, we divided the studies into two groups based on their method-
ological approach. Centralised methologies consider a multi-project scheduling problem
with one decision maker and one common goal for the entire portfolio. In contrast, decen-
tralised versions consider the situation with multiple decision makers, one for each project,
that optimise their own local objective. The problem statements of these two categories
are not too widely different as the end goal is to optimise a portfolio-level objective in
both cases but their solution approaches are. Centralised approaches often outperform the

2

decentralised approaches because they do not have to overcome an information assymetry.
For this reason, our study focusses on the centralised approaches to the RCMPSP. A formal
description of the (centralised) RCMPSP is presented in the following paragraph.

Table 1. Notations and formulae

General parameters
J The set of projects, indexed by j
N The number of projects in the portfolio
rj The release date of project j
dj The due date of project j
Ij The set of activities of project j, indexed by i
nj The number of non-dummy activities in project j
aij Activity i of project j
dij The duration of aij

a0j The dummy-start activity of project j
a(nj+1)j The dummy-end activity of project j
Network parameters
Pij The set of predecessors of aij

Resource parameters
K The set of renewable resource types, indexed by k
Rk The per period availablility of resource type k
rijk The resource requirement of aij for resource type k
Decision variables
sij The start time of aij

fij = sij + aij The finish time of aij

Consider a multi-project portfolio that consists of a set of renewable resources K,
indexed by k and a set of projects J , indexed by j. Each project j contains a set of
activities Ij, indexed by i. Every activity, denoted by aij , has a duration dij , a set of
renewable resource requirements rk and a set of predecessor activities Pij . It is possible
that an activity has predecessor activities belonging to a different project. In the RCMPSP,
the task is to determine the start times sij of each activity aij in the multi-project portfolio
to optimise a certain criterion while respecting the precedence relations of each activity and
the number resources of each type available to the project, Rk. The precedence relations
restrict the start time of an activity aij to be no earlier than the finish time of each of its
predecessor activities Pij . The finish time of an activity is obtained by incrementing the
start time sij of an activity with its duration dij . Furthermore, the sum of the resource
requirements rijk of each activity i of each project j scheduled at time t can not be larger
than the resource availability Rk, for each resource k, at any time t during the scheduling
horizon T . Finally, a project can have a release date rj that forbids the start time of any
activity in the project to be earlier than rj . An overview of the notations used and other
useful metrics can be found in Table 1.

3 Benchmark Analysis

We retrieved ten publications that propose a centralised metaheursitic solution proce-
dure for the problem formulated in the previous section. These metaheuristic algorithms
were implemented and rigorously tested and benchmarked on various settings. Key to our
analysis is the distinction between solution strategies that focus on ordering the set of
projects and those that do not. Four of the algorithms were classified as belonging to the

3

first group, while the remaining six did not have an inherent project ordering strategy to
generate solutions. We find that this explains a significant amount of the performance differ-
ences between the procedures with the first group performing significantly better in terms
of project lateness while the latter group is better able to reduce the portfolio makespan.
Furthermore, performance differences between solution procedures were also explained by
instance parameters, optimisation criteria and the type of due date used. We present a
detailed discussion on each of these factors and review the mechanisms that underlie their
impact on the performance of the metaheuristics.

4 Two-stage metaheuristic algorithm

Fig. 1. Two-stage metaheuristic algorithm.

We present a novel two-stage algorithm that is briefly summarised in Figure 1. Our novel
solution strategy builds upon the observation that the first step in constructing a good
solution to most types of RCMPSPs is finding the appropriate project scheduling order.
The first stage of our algorithm, therefore, introduces strategies similar to those proposed
by Kumanan et al. (2006), Wauters et al. (2015), Perez et al. (2016) and Van Eynde and
Vanhoucke (2020). The initial solutions are given by a set of well-performing priority rules.
After the first stage algorithm concludes its search, some greedy improvements strategies
are executed on the set of best-known solutions to further improve the quality and diversity
of the solutions in this set. The first stage is able to outperform the majority of the existing
heuristics even though its search space is limited to schedules with a strict project order.
The resulting set of best solutions from the first stage is used as input to the second stage
that relaxes this strict ordering restriction. The second stage algorithm builds upon some
elements introduced by Homberger (2007) and Goncalves et al. (2008) but relies largely on

4

novel techniques including new local searches. Two versions of the second-stage algorithm
are developed and performance differences are discussed. The second-stage algorithm is
re-started using a combination of the previous best solutions and the best solutions from
earlier iterations until a stop criterion is met.

Acknowledgements

We acknowledge the support provided by computational resources of the VSC (Flemish
Supercomputing Center), funded by Ghent Univerisity, FWO and the Flemish Government
department EWI.

References

Goncalves, J.F., J.J. Mendes and M.G. Resende, 2008, “A genetic algorithm for the resource
constrained multi-project scheduling problem", European Journal of Operational Research,
Vol. 189, pp. 1171-1190.

Homberger J., 2007, “A multi agent system for the decentralized resource constrained multi project
scheduling problem", International Transactions in Operational Research, Vol. 14, pp. 565-
589.

Kumanan, S., G.J. Jose and K. Raja, 2006, “Multi project scheduling using an heuristic and a
genetic algorithm", The International Journal of Advanced Manufacturing Technology, Vol.
31, pp. 360-366.

Perez, E., M. Posada and A. Lorenzana, 2016, “Taking advantage of solving the resource con-
strained multi-project scheduling problems using multi-modal genetic algorithms", Soft Com-
puting, Vol. 20, pp. 1879-1896.

Van Eynde, R. and M. Vanhoucke, 2016, “Resource constrained multi project scheduling: Bench-
mark datasets and decoupled scheduling", Journal of Scheduling, Vol. 23, pp. 301-325.

Wauters, T., K. Verbeeck, P. De Causmaecker and C. Vanden Berghe, 2015, “A learning based
optimisation approach to multi-project scheduling", Journal of Scheduling, Vol. 18, pp. 61-74.

List of participants

• Jakob	Snauwaert	(jakob.snauwaert@ugent.be)	
• José	Coelho	(jcoelho@uab.pt)	
• Laurent	Houssin	(houssin@laas.fr)	
• Avraham	Shtub	(shtub@ie.technion.ac.il)	
• ONCU	HAZIR	(oncu.hazir@rennes-sb.com)	
• Stefan	Creemers	(s.creemers@ieseg.fr)	
• Gerhard	Woeginger	(woeginger@algo.rwth-aachen.de)	
• Chris	PoOs	(C.N.PoOs@soton.ac.uk)	
• Maximilian	Kolter	(max.kolter@hotmail.de)	
• Erwin	Pesch	(erwin.pesch@uni-siegen.de)	
• Juergen	Zimmermann	(juergen.zimmermann@tu-clausthal.de)	
• Alessandro	Hill	(alessandro.hill@gmail.com)	
• Max	Reinke	(max.reinke@tu-clausthal.de)	
• Mareike	Karnebogen	(mareike.karnebogen@tu-clausthal.de)	
• Pierre	Lopez	(pierre.lopez@laas.fr)	
• Roel	Leus	(Roel.Leus@kuleuven.be)	
• Nicklas	Klein	(nicklas.klein@unibe.ch)	
• Lowell	Lorenzo	(Lowell.Lorenzo@up.edu.ph)	
• Erik	Demeulemeester	(erik.demeulemeester@kuleuven.be)	
• Pascale	BendoV	(pascale.bendoV@lip6.fr)	
• Léa	Blaise	(lblaise@localsolver.com)	
• Aykut	Uzunoglu	(aykut.uzunoglu@wiwi.uni-augsburg.de)	
• Hendrik	Weber	(hendrik.weber@tum.de)	
• Jan	Węglarz	(jan.weglarz@cs.put.poznan.pl)	
• Alain	Haït	(alain.hait@isae.fr)	
• Karim	TAMSSAOUET	(karim.tamssaouet@bi.no)	
• Christoph	Schwindt	(christoph.schwindt@tu-clausthal.de)	
• Hanyu	Gu	(hanyu.gu@uts.edu.au)	
• Julia	Lange	(julia.lange@wiwi.uni-kl.de)	
• Vincent	T'Kindt	(tkindt@univ-tours.fr)	
• Camilo	Rodríguez-Espinosa	(camiloa.rodriguez@javeriana.edu.co)	
• Paz	Perez-Gonzalez	(pazperez@us.es)	
• paula	sanchez	de	los	reyes	(paulasanchezdlr.2698@gmail.com)	
• Lubo	Li	(2382145420@qq.com)	
• haohua	zhang	(892858495@qq.com)	
• Lei	LIU	(lei.liu@polimi.it)	
• Izack	Cohen	(izack.cohen@biu.ac.il)	
• Marcello	Urgo	(marcello.urgo@polimi.it)	
• OLIVIER	PLOTON	(olivier.ploton@univ-tours.fr)	
• Chrishn	Schumacher	(chrishn.schumacher@tu-dortmund.de)	
• Chrishan	Stürck	(chrishan.stuerck@hsu-hh.de)	
• Lucas	BerteroVère	(lucas.berteroVere@emse.fr)	
• Itai	Lishner	(itailishner@hotmail.com)	
• Venkataramiah	Annapragada	(asvenkata@azuriteproject.in)	
• Mario	Chrishan	Sillus	(mcs16@tu-clausthal.de)	
• Jérémy	Berthier	(j.berthier@emse.fr)	
• Quenhn	PENA	(quenhn.pena@hds.utc.fr)	
• Sigrid	Knust	(sigrid@informahk.uni-osnabrueck.de)	
• Bo	Chen	(b.chen@warwick.ac.uk)	
• Daniel	Page	(drpage@pagewizardgames.com)	

• Lena	Wohlert	(lena.sophie.wohlert@tu-clausthal.de)	
• Anouck	Chan	(anouck.chan@onera.fr)	
• Anulark	Naber	(anulark@gmail.com)	
• Evgeny	Gurevsky	(evgeny.gurevsky@univ-nantes.fr)	
• Ernest	Foussard	(ernest.foussard@grenoble-inp.fr)	
• Camille	Bonnin	(camille.bonnin@grenoble-inp.fr)	
• Feifei	Li	(glmeifei@buu.edu.cn)	
• Bernard	Penz	(bernard.penz@grenoble-inp.fr)	
• Margaux	NaOaf	(margaux.naOaf@grenoble-inp.fr)	
• Nadia	Brauner	(nadia.brauner@grenoble-inp.fr)	
• Marie-Laure	Espinouse	(Marie-Laure.Espinouse@g-scop.grenoble-inp.fr)	
• Rojin	Nekoueian	(Rojin.nekoueian@ugent.be)	
• Forough	Vaseghi	(forough.vaseghi@ugent.be)	
• Carla	Juvin	(cjuvin@laas.fr)	
• Mahdi	Fathi	(mahdi.fathi@unt.edu)	
• Fekadu	Tolessa	Gedefa	(gedefan@math.elte.hu)	
• Yanfei	Chen	(yanfei.chen@kuleuven.be)	
• YONG	MA	(mayong5118@outlook.com)	
• Elvin	Coban	(elvin.coban@ozyegin.edu.tr)	
• Cyril	Briand	(briand@laas.fr)	
• Pecyna	Tomasz	(tpecyna@man.poznan.pl)	
• Louis	Riviere	(louis.riviere@laas.fr)	
• Izel	Unsal	Altuncan	(izel.unsalaltuncan@ugent.be)	
• Norbert	Trautmann	(norbert.trautmann@pqm.unibe.ch)	
• Xin	Guan	(xin.guan@ugent.be)	
• Tobias	Joosten	(tobias.joosten@itwm.fraunhofer.de)	
• Joanna	Józefowska	(jjozefowska@cs.put.poznan.pl)	
• Michael	Moos	(michael.moos@itwm.fraunhofer.de)	
• Alessandro	Agnehs	(agnehs@diism.unisi.it)	
• Liangyan	Tao	(lytao@nuaa.edu.cn)	
• Fei	Wu	(fwu0966@gmail.com)	
• Dominik	Mäckel	(dominik.maeckel@tu-dortmund.de)	
• Massimiliano	Caramia	(caramia@dii.uniroma2.it)	
• Ángeles	Pérez	(angeles.perez@uv.es)	
• Dries	Bredael	(dries.bredael@ugent.be)	
• weikang	Guo	(weikang.guo@ugent.be)	
• Jingyu	Luo	(jingyu.luo@UGent.be)	
• Rahman	Torba	(r.torba@emse.fr)	
• Antoine	Lhomme	(antoine.lhomme@grenoble-inp.org)	
• Stéphane	Dauzère-Pérès	(Dauzere-Peres@emse.fr)	
• Gérémi	Bridonneau	(geremi.bridonneau@gmail.com)	
• Chrishan	Gahm	(chrishan.gahm@uni-a.de)	
• Salah	Ahmed	(salah.ahmed@usn.no)	
• Stéphanie	Roussel	(stephanie.roussel@onera.fr)	
• xi	wu	(xi.wu@ugent.be)	
• Wanjun	Liu	(Wanjun.Liu@Ugent.be)	
• fangfang	Cao	(1165600145@qq.com)	
• Eliana	María	González-Neira	(eliana.gonzalez@javeriana.edu.co)	
• Tom	Portoleau	(tom.portoleau@gmail.com)	
• Mario	Flores	Gomez	(mario.flores@emse.fr)	
• Carreira	Julio	(1101469@estudante.uab.pt)	
• Minh-Phuoc	DOAN	(minh-phuoc.doan@grenoble-inp.fr)	

• YAGMUR	SELCUK	(yagmur.selcuk@ozu.edu.tr)	
• Leila	Naeni	(leila.mosleminaeni@uts.edu.au)	
• Kian	Farajkhah	(kian.farajkhan@ozu.edu.tr)	

List of sponsors

